Question Number 158822 by qaz last updated on 09/Nov/21
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\mathrm{arctan}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}=? \\ $$
Answered by mindispower last updated on 09/Nov/21
$$\underset{{n}\geqslant\mathrm{0}} {\sum}\left\{{arctan}\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{1}}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{4}{n}+\mathrm{3}}\right)\right\} \\ $$$$=\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{4}{n}+\mathrm{1}\right)}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} }−\frac{\left(\mathrm{4}{n}+\mathrm{3}\right)}{\left(\mathrm{4}{n}+\mathrm{3}\right)^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{0}} {\sum}\int_{\mathrm{0}} ^{\mathrm{1}} \left\{\frac{{dx}}{\mathrm{4}{n}+\mathrm{1}+{ix}}+\frac{{dx}}{\mathrm{4}{n}+\mathrm{1}−{ix}}\right\}−\frac{\mathrm{1}}{\mathrm{2}}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{4}{n}+\mathrm{3}+{ix}}+\frac{{dx}}{\mathrm{4}{n}+\mathrm{3}−{ix}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}+{ix}}{\mathrm{4}}}−\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\frac{\mathrm{1}−{ix}}{\mathrm{4}}}−\frac{\mathrm{1}}{{n}}\right){dx} \\ $$$$−\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}+{ix}}{\mathrm{4}}}−\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\frac{\mathrm{3}−{ix}}{\mathrm{4}}}−\frac{\mathrm{1}}{{n}}\right){dx} \\ $$$$+{arctan}\left(\mathrm{1}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\mathrm{1}} \left({H}_{\frac{\mathrm{1}+{ix}}{\mathrm{4}}} +{H}_{\frac{\mathrm{1}−{ix}}{\mathrm{4}}} −{H}_{\frac{\mathrm{3}+{ix}}{\mathrm{4}}} +{H}_{\frac{\mathrm{3}−{ix}}{\mathrm{4}}} \right)+{arctan}\left(\mathrm{1}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\Psi\left(\frac{\mathrm{1}+{ix}}{\mathrm{4}}\right)−\Psi\left(\frac{\mathrm{3}−{ix}}{\mathrm{4}}\right)+\Psi\left(\frac{\mathrm{1}−{ix}}{\mathrm{4}}\right)−\Psi\left(\frac{\mathrm{3}+{ix}}{\mathrm{4}}\right)}{\mathrm{8}}{dx}+\frac{\pi}{\mathrm{4}}−{arctan}\left(\mathrm{3}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left({log}\left(\Gamma\left(\frac{\mathrm{1}+{i}}{\mathrm{4}}\right)\right)−{log}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)+{log}\Gamma\left(\frac{\mathrm{3}−{i}}{\mathrm{4}}\right)−{log}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right. \\ $$$$\left.−{log}\Gamma\left(\frac{\mathrm{1}−{i}}{\mathrm{4}}\right)+{log}\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)−{log}\Gamma\left(\frac{\mathrm{3}+{i}}{\mathrm{4}}\right)+{log}\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\right)+\frac{\pi}{\mathrm{4}}−{arctan}\:\mathrm{3} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\Gamma\left(\frac{\mathrm{1}+{i}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}−{i}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}−{i}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}+{i}}{\mathrm{4}}\right)}\right)+\frac{\pi}{\mathrm{4}}−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{log}\left(\frac{\pi}{{sin}\left(\frac{\pi\left(\mathrm{1}+{i}\right)}{\mathrm{4}}\right)}.\frac{{sin}\left(\frac{\pi\left(\mathrm{1}−{i}\right)}{\mathrm{4}}\right)}{\pi}\right)+\frac{\pi}{\mathrm{4}}−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}}\right)+\frac{\pi}{\mathrm{4}}−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}}{log}\left(−{i}\right)+\frac{\pi}{\mathrm{4}}−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=−{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$ \\ $$$$ \\ $$
Commented by mindispower last updated on 10/Nov/21
$${pleasur} \\ $$$${there}\:{is}\:{a}\:{mistak}\:{in}\:{calculus}\:{i}\:{will}\:{tchek}\:{it}\: \\ $$$${after}\:{sorry}\: \\ $$
Commented by qaz last updated on 10/Nov/21
$$\mathrm{thanks}\:\mathrm{a}\:\mathrm{lot}.\mathrm{sir} \\ $$