Question Number 125994 by Dwaipayan Shikari last updated on 16/Dec/20
$$\frac{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } }{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}{n}^{\mathrm{2}} } } \\ $$
Answered by Olaf last updated on 16/Dec/20
$$\mathrm{Jacobi}\:\mathrm{Theta}\:\mathrm{function}\:: \\ $$$$\vartheta\left({z},\tau\right)\:=\:\underset{{n}=−\infty} {\overset{{n}=+\infty} {\sum}}\mathrm{exp}\left(\pi{in}^{\mathrm{2}} \tau+\mathrm{2}\pi{inz}\right) \\ $$$$\vartheta\left(\mathrm{0},\frac{{i}}{\pi}\right)\:=\:\underset{{n}=−\infty} {\overset{{n}=+\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } \:=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } −\mathrm{1}\:\left(\mathrm{1}\right) \\ $$$$\vartheta\left(\mathrm{0},\frac{\mathrm{2}{i}}{\pi}\right)\:=\:\underset{{n}=−\infty} {\overset{{n}=+\infty} {\sum}}{e}^{−\mathrm{2}{n}^{\mathrm{2}} } \:=\:\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}{n}^{\mathrm{2}} } −\mathrm{1}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\::\:\frac{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } }{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−\mathrm{2}{n}^{\mathrm{2}} } }\:=\:\frac{\vartheta\left(\mathrm{0},\frac{{i}}{\pi}\right)+\mathrm{1}}{\vartheta\left(\mathrm{0},\frac{\mathrm{2}{i}}{\pi}\right)+\mathrm{1}} \\ $$
Commented by Dwaipayan Shikari last updated on 16/Dec/20
$${Thanking}\:{you}!\:{But}\:{is}\:{there}\:{any}\:{other}\:{way}\:{to}\:{approximate}? \\ $$
Commented by Olaf last updated on 16/Dec/20
$$\mathrm{There}\:\mathrm{is}\:\mathrm{no}\:\mathrm{asymptotic}\:\mathrm{formula} \\ $$$$\mathrm{but}\:\mathrm{a}\:\mathrm{computation}\:\mathrm{is}\:\mathrm{possible}. \\ $$$$\mathrm{See}\:\mathrm{here}\:: \\ $$$$\mathrm{https}://\mathrm{hlabrande}.\mathrm{fr}/\mathrm{maths}/\mathrm{pubs}/\mathrm{theta}.\mathrm{pdf} \\ $$
Commented by Dwaipayan Shikari last updated on 16/Dec/20
$$\underset{{n}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}{e}^{−{n}^{\mathrm{2}} } \sim\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{−{x}^{\mathrm{2}} } }{\mathrm{2}}+{i}\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\left({ix}\right)^{\mathrm{2}} } −{e}^{−\left(−{ix}\right)^{\mathrm{2}} } }{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}{dx} \\ $$$$=\:\:\:\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} } {dx}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{0}\:\sim\frac{\sqrt{\pi}+\mathrm{1}}{\mathrm{2}} \\ $$$${Can}\:{we}\:{use}\:{this}\:? \\ $$$${Abel}\:{plana}\:{formula} \\ $$$$\underset{{z}\geqslant\mathrm{0}} {\overset{\infty} {\sum}}{f}\left({z}\right){dz}=\int_{\mathrm{0}} ^{\infty} {f}\left({z}\right){dz}+\frac{{f}\left(\mathrm{0}\right)}{\mathrm{2}}+{i}\int_{\mathrm{0}} ^{\infty} \frac{{f}\left({it}\right)−{f}\left(−{it}\right)}{{e}^{\mathrm{2}\pi{t}} −\mathrm{1}}{dt} \\ $$
Commented by Dwaipayan Shikari last updated on 16/Dec/20
$${Thanking}\:{you} \\ $$