Menu Close

n-0-e-n-2-n-0-e-2n-2-




Question Number 125994 by Dwaipayan Shikari last updated on 16/Dec/20
((Σ_(n=0) ^∞ e^(−n^2 ) )/(Σ_(n=0) ^∞ e^(−2n^2 ) ))
n=0en2n=0e2n2
Answered by Olaf last updated on 16/Dec/20
Jacobi Theta function :  ϑ(z,τ) = Σ_(n=−∞) ^(n=+∞) exp(πin^2 τ+2πinz)  ϑ(0,(i/π)) = Σ_(n=−∞) ^(n=+∞) e^(−n^2 )  = 2Σ_(n=0) ^∞ e^(−n^2 ) −1 (1)  ϑ(0,((2i)/π)) = Σ_(n=−∞) ^(n=+∞) e^(−2n^2 )  = 2Σ_(n=0) ^∞ e^(−2n^2 ) −1 (2)  (1) and (2) : ((Σ_(n=0) ^∞ e^(−n^2 ) )/(Σ_(n=0) ^∞ e^(−2n^2 ) )) = ((ϑ(0,(i/π))+1)/(ϑ(0,((2i)/π))+1))
JacobiThetafunction:ϑ(z,τ)=n=+n=exp(πin2τ+2πinz)ϑ(0,iπ)=n=+n=en2=2n=0en21(1)ϑ(0,2iπ)=n=+n=e2n2=2n=0e2n21(2)(1)and(2):n=0en2n=0e2n2=ϑ(0,iπ)+1ϑ(0,2iπ)+1
Commented by Dwaipayan Shikari last updated on 16/Dec/20
Thanking you! But is there any other way to approximate?
Thankingyou!Butisthereanyotherwaytoapproximate?
Commented by Olaf last updated on 16/Dec/20
There is no asymptotic formula  but a computation is possible.  See here :  https://hlabrande.fr/maths/pubs/theta.pdf
Thereisnoasymptoticformulabutacomputationispossible.Seehere:https://hlabrande.fr/maths/pubs/theta.pdf
Commented by Dwaipayan Shikari last updated on 16/Dec/20
Σ_(n≥0) ^∞ e^(−n^2 ) ∼∫_0 ^∞ e^(−x^2 ) dx+lim_(x→0) (e^(−x^2 ) /2)+i∫_0 ^∞ ((e^(−(ix)^2 ) −e^(−(−ix)^2 ) )/(e^(2πx) −1))dx  =   ∫_0 ^∞ e^(−x^2 ) dx+(1/2)+0 ∼(((√π)+1)/2)  Can we use this ?  Abel plana formula  Σ_(z≥0) ^∞ f(z)dz=∫_0 ^∞ f(z)dz+((f(0))/2)+i∫_0 ^∞ ((f(it)−f(−it))/(e^(2πt) −1))dt
n0en20ex2dx+limx0ex22+i0e(ix)2e(ix)2e2πx1dx=0ex2dx+12+0π+12Canweusethis?Abelplanaformulaz0f(z)dz=0f(z)dz+f(0)2+i0f(it)f(it)e2πt1dt
Commented by Dwaipayan Shikari last updated on 16/Dec/20
Thanking you
Thankingyou

Leave a Reply

Your email address will not be published. Required fields are marked *