Menu Close

n-1-1-1-2-1-3-1-n-n-1-n-2-




Question Number 146735 by qaz last updated on 15/Jul/21
Σ_(n=1) ^∞ ((1+(1/2)+(1/3)+...+(1/n))/((n+1)(n+2)))=?
n=11+12+13++1n(n+1)(n+2)=?
Answered by Olaf_Thorendsen last updated on 15/Jul/21
S_N  = Σ_(n=1) ^N (H_n /(n+1))−Σ_(n=1) ^N (H_n /(n+2))  S_N  = Σ_(n=1) ^N ((H_n +(1/(n+1)))/(n+1))−Σ_(n=1) ^N (1/((n+1)^2 ))  −Σ_(n=1) ^N ((H_n +(1/(n+1))+(1/(n+2)))/(n+2))+Σ_(n=1) ^N (1/((n+1)(n+2)))  +Σ_(n=1) ^N (1/((n+2)^2 ))    S_N  = Σ_(n=2) ^(N+1) (H_n /n)−Σ_(n=2) ^(N+1) (1/n^2 )−Σ_(n=3) ^(N+2) (H_n /n)  +Σ_(n=2) ^(N+1) (1/n)−Σ_(n=3) ^(N+2) (1/n)+Σ_(n=3) ^(N+2) (1/n^2 )  S_N  = (H_2 /2)−(H_(n+2) /(n+2))+(1/((n+2)^2 ))−(1/2^2 )+(1/2)−(1/(n+2))    H_n  ∼ lnn+γ ⇒ (H_(n+2) /(n+2)) → 0    Finally S_∞  = ((1+(1/2))/2)−(1/4)+(1/2) = 1
SN=Nn=1Hnn+1Nn=1Hnn+2SN=Nn=1Hn+1n+1n+1Nn=11(n+1)2Nn=1Hn+1n+1+1n+2n+2+Nn=11(n+1)(n+2)+Nn=11(n+2)2SN=N+1n=2HnnN+1n=21n2N+2n=3Hnn+N+1n=21nN+2n=31n+N+2n=31n2SN=H22Hn+2n+2+1(n+2)2122+121n+2Hnlnn+γHn+2n+20FinallyS=1+12214+12=1
Answered by mnjuly1970 last updated on 15/Jul/21
   solution..     we know that:    Σ_(n≥1) ((H_n x^( n+1) )/(n+1)) = (1/2) log^( 2) (1−x )      Σ_(n≥1) (H_n /((n+1)(n+2))) =(1/2) ∫_0 ^( 1) log^2 (x)dx        = (1/2) {[xlog^( 2) (x)]_0 ^( 1) −2 ∫_0 ^( 1) log(x)dx}         = −∫_0 ^( 1) log(x)dx =1....✓
solution..weknowthat:n1Hnxn+1n+1=12log2(1x)n1Hn(n+1)(n+2)=1201log2(x)dx=12{[xlog2(x)]01201log(x)dx}=01log(x)dx=1.
Commented by qaz last updated on 15/Jul/21
Σ_(n=1) ^∞ (H_n /((n+1)(n+2)))=Σ_(n=1) ^∞ H_n ∫_0 ^1 (x^n −x^(n+1) )dx=∫_0 ^1 (−((ln(1−x))/(1−x))+((xln(1−x))/(1−x)))dx  =−∫_0 ^1 ln(1−x)dx=1  −−−−−−−−−−−−−−−  Σ_(n=1) ^∞ H_n x^n =Σ_(n=1) ^∞ Σ_(k=1) ^n (x^n /k)=Σ_(k=1) ^∞ Σ_(n=k) ^∞ (x^n /k)=Σ_(k=1) ^∞ Σ_(n=0) ^∞ (x^(n+k) /k)=(Σ_(k=1) ^∞ (x^k /k))(Σ_(n=0) ^∞ x^n )=−((ln(1−x))/(1−x))
n=1Hn(n+1)(n+2)=n=1Hn01(xnxn+1)dx=01(ln(1x)1x+xln(1x)1x)dx=01ln(1x)dx=1n=1Hnxn=n=1nk=1xnk=k=1n=kxnk=k=1n=0xn+kk=(k=1xkk)(n=0xn)=ln(1x)1x

Leave a Reply

Your email address will not be published. Required fields are marked *