Menu Close

n-1-1-1-2-1-n-1-2-n-ln4-




Question Number 104604 by ~blr237~ last updated on 22/Jul/20
Σ_(n=1) ^∞  (1+(1/2)+...+(1/n))(1/2^n )  = ln4
n=1(1+12++1n)12n=ln4
Answered by OlafThorendsen last updated on 22/Jul/20
S = Σ_(n=1) ^∞  (1+(1/2)+...+(1/n))(1/2^n )  S = Σ_(n=1) ^∞ (1/2^n )Σ_(k=1) ^n (1/k)  S = Σ_(n=1) ^∞ (1/n)Σ_(k=n) ^∞ (1/2^k )  S = lim_(N→∞) Σ_(n=1) ^∞ (1/n).(1/2^n ).((1−((1/2))^N )/(1−(1/2)))  S = 2Σ_(n=1) ^∞ (1/n).(1/2^n )  S = 2Σ_(n=1) ^∞ (2^(−n) /n)  (1/(1−x)) = Σ_(n=0) ^∞ x^k , ∣x∣<1  −ln∣1−x∣ = Σ_(n=1) ^∞ (x^k /k)  S = 2Σ_(n=1) ^∞ (2^(−n) /n) = −2ln∣1−(1/2)∣  S = 2Σ_(n=1) ^∞ (2^(−n) /n) = −2ln(1/2) = ln4
S=n=1(1+12++1n)12nS=n=112nnk=11kS=n=11nk=n12kS=limNn=11n.12n.1(12)N112S=2n=11n.12nS=2n=12nn11x=n=0xk,x∣<1ln1x=n=1xkkS=2n=12nn=2ln112S=2n=12nn=2ln12=ln4
Commented by ~blr237~ last updated on 23/Jul/20
Nice work Sir
NiceworkSir

Leave a Reply

Your email address will not be published. Required fields are marked *