Menu Close

n-1-1-1-n-2-1-2-n-




Question Number 154441 by talminator2856791 last updated on 18/Sep/21
                     Π_(n=1) ^∞  (( (1+ (1/n))^2  )/( 1+ (2/n) ))
n=1(1+1n)21+2n
Commented by benhamimed last updated on 18/Sep/21
=Π(((n+1)/n))^2 ×(n/(n+2))=Π(((n+1)^2 )/(n(n+2)))  =lim((2^2 ×3^2 ×4^2 ×..×(n−1)^2 ×n^2 ×(n+1)^2 )/((1×3)(2×4)(3×5)×..×((n−2)n)((n−1)(n+1))(n(n+2))))  lim((2(n+1))/((n+2)))=2
=Π(n+1n)2×nn+2=Π(n+1)2n(n+2)=lim22×32×42×..×(n1)2×n2×(n+1)2(1×3)(2×4)(3×5)×..×((n2)n)((n1)(n+1))(n(n+2))lim2(n+1)(n+2)=2
Answered by Kamel last updated on 18/Sep/21
                     Π_(n=1) ^∞  (( (1+ (1/n))^2  )/( 1+ (2/n) ))   P=Π_(n=1) ^(+∞) ((n+1)/n).((n+1)/(n+2))=(2/1).(2/3).(3/2).(3/4).(4/3).(4/5)...      =2
n=1(1+1n)21+2nP=+n=1n+1n.n+1n+2=21.23.32.34.43.45=2
Commented by mnjuly1970 last updated on 18/Sep/21
  ln (p )= lim Σ_(k=1) ^n {ln(((k+1)/k))+ln(((k+1)/(k+2)))}    = lim_(n→∞)  (n +1 ) +ln (2) −lim_(n→∞) (n+2)     = lim_(n→∞) (((n+1)/(n+2))) +ln(2)=ln(2)        ∴         p=2
ln(p)=limnk=1{ln(k+1k)+ln(k+1k+2)}=limn(n+1)+ln(2)limn(n+2)=limn(n+1n+2)+ln(2)=ln(2)p=2

Leave a Reply

Your email address will not be published. Required fields are marked *