Menu Close

n-1-1-n-1-3n-1-




Question Number 183967 by SEKRET last updated on 01/Jan/23
  Σ_(n=1) ^∞  (((−1)^(n+1) )/(3n−1))  =   ?
n=1(1)n+13n1=?
Answered by Ar Brandon last updated on 01/Jan/23
S=Σ_(n=1) ^∞ (((−1)^(n+1) )/(3n−1))=Σ_(n=1) ^∞ (((−1)^(3n−1) )/(3n−1))  S(t)=Σ_(n=1) ^∞ (t^(3n−1) /(3n−1)) ⇒S ′(t)=Σ_(n=1) ^∞ t^(3n−2) =(t/(1−t^3 ))  ⇒S(t)=∫(t/(1−t^3 ))dt=−∫(t/((t−1)(t^2 +t+1)))dt  ⇒S(t)=−∫((1/(3(t−1)))−((t−1)/(3(t^2 +t+1))))dt  ⇒S(t)=−(1/3)ln∣t−1∣+(1/6)∫((2t+1)/(t^2 +t+1))dt−(1/2)∫(1/(t^2 +t+1))dt                =−(1/3)ln∣t−1∣+(1/6)ln(t^2 +t+1)−(1/( (√3)))arctan(((2t+1)/( (√3))))+C  S(0)=0=−(1/( (√3)))arctan((1/( (√3))))+C ⇒C=(π/(6(√3)))  ⇒S(t)=−(1/( 3))ln∣t−1∣+(1/6)ln(t^2 +t+1)−(1/( (√3)))arctan(((2t+1)/( (√3))))+(π/(6(√3)))  ⇒Σ_(n=1) ^∞ (((−1)^(n+1) )/(3n−1))=S(−1)=−((ln2)/3)−(1/( (√3)))arctan(−(1/( (√3))))+(π/(6(√3)))  ⇒ determinant (((Σ_(n=1) ^∞ (((−1)^(n+1) )/(3n−1))=−((ln2)/3)+(π/(3(√3))))))
S=n=1(1)n+13n1=n=1(1)3n13n1S(t)=n=1t3n13n1S(t)=n=1t3n2=t1t3S(t)=t1t3dt=t(t1)(t2+t+1)dtS(t)=(13(t1)t13(t2+t+1))dtS(t)=13lnt1+162t+1t2+t+1dt121t2+t+1dt=13lnt1+16ln(t2+t+1)13arctan(2t+13)+CS(0)=0=13arctan(13)+CC=π63S(t)=13lnt1+16ln(t2+t+1)13arctan(2t+13)+π63n=1(1)n+13n1=S(1)=ln2313arctan(13)+π63n=1(1)n+13n1=ln23+π33
Commented by Ar Brandon last updated on 01/Jan/23
★★Happy New Year friends ★★
HappyNewYearfriends
Commented by SEKRET last updated on 01/Jan/23
  thanks  sir
thankssir
Commented by SEKRET last updated on 01/Jan/23
thanks
thanks
Answered by witcher3 last updated on 01/Jan/23
=−Σ_(n≥1) ∫_0 ^1 (−1)^(n+1) x^(3n−2) dx  =−∫_0 ^1 (1/x^2 )Σ_(n≥1) (−x^3 )^n dx  =−∫_0 ^1 ((−x)/(1+x^3 ))dx=−∫_0 ^1 (x/((x+1)(x^2 −x+1)))dx  =∫_0 ^1 (((x+1)^2 −(x^2 −x+1))/((x+1)(x^2 −x+1)))dx  ={∫_0 ^1 ((x+1)/(x^2 −x+1))−ln(2)}  =∫_0 ^1 ((2x−1)/(2(x^2 −x+1)))dx+(3/2)∫_0 ^1 (dx/(x^2 −x+1))−ln(2)  =−ln(2)+(3/2)∫_0 ^1 (dx/((x−(1/2))^2 +(3/4)))  =−ln(2)+2∫_0 ^1 (dx/(1+(((2x)/( (√3)))−(1/( (√3))))^2 ))  =−ln(2)+(√(3.))2.tan^(−1) ((1/( (√3))))  =−ln(2)+(π/( (√3)))
=n101(1)n+1x3n2dx=011x2n1(x3)ndx=01x1+x3dx=01x(x+1)(x2x+1)dx=01(x+1)2(x2x+1)(x+1)(x2x+1)dx={01x+1x2x+1ln(2)}=012x12(x2x+1)dx+3201dxx2x+1ln(2)=ln(2)+3201dx(x12)2+34=ln(2)+201dx1+(2x313)2=ln(2)+3.2.tan1(13)=ln(2)+π3
Commented by Ar Brandon last updated on 01/Jan/23
(x+1)^2 −(x^2 −x+1)=3x
(x+1)2(x2x+1)=3x
Commented by SEKRET last updated on 01/Jan/23
thanks  sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *