Menu Close

n-1-1-n-1-n-2-




Question Number 27388 by macanudo last updated on 06/Jan/18
Σ_(n=1) ^∞  (((−1)^(n+1) )/n^2 )
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}^{\mathrm{2}} }\:\: \\ $$
Commented by abdo imad last updated on 06/Jan/18
= Σ_(n=2p) (...)+Σ_(n=2p+1) (...)  =−(1/4) Σ_(p=1) ^∝    (1/p^2 )  + Σ_(p=0) ^∝    (1/((2p+1)^2 ))  =−(1/4) (π^2 /6) + (π^2 /8)  = (π^2 /8)− (π^2 /(24))= (π^2 /(12)) .
$$=\:\sum_{{n}=\mathrm{2}{p}} \left(…\right)+\sum_{{n}=\mathrm{2}{p}+\mathrm{1}} \left(…\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\:\sum_{{p}=\mathrm{1}} ^{\propto} \:\:\:\frac{\mathrm{1}}{{p}^{\mathrm{2}} }\:\:+\:\sum_{{p}=\mathrm{0}} ^{\propto} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:+\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\:\frac{\pi^{\mathrm{2}} }{\mathrm{24}}=\:\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *