Menu Close

n-1-1-n-1-n-n-2-




Question Number 161623 by amin96 last updated on 20/Dec/21
Σ_(n=1) ^∞ (((−1)^(n+1) )/(n(n+2)))=?
n=1(1)n+1n(n+2)=?
Answered by TheSupreme last updated on 20/Dec/21
(A/n)+(B/(n+2))=(((−1)^(n+1) )/(n(n+2)))  An+2A+Bn=(−1)^(n+1)   A=−B=(((−1)^(n+1) )/2)  Σ_(n=1) ^∞ (((−1)^(n+1) )/2)(1/n)−(((−1)^(n+1) )/2)(1/(n+2))  s_n =(1/2)−(1/3)+(((−1)^n )/(n+2))  lim s_n =(1/2)−(1/3)=(1/6)
An+Bn+2=(1)n+1n(n+2)An+2A+Bn=(1)n+1A=B=(1)n+12n=1(1)n+121n(1)n+121n+2sn=1213+(1)nn+2limsn=1213=16
Commented by mr W last updated on 21/Dec/21
how did you come from  An+2A+Bn=(−1)^(n+1)   to   A=−B=(((−1)^(n+1) )/2) ?
howdidyoucomefromAn+2A+Bn=(1)n+1toA=B=(1)n+12?
Answered by mathmax by abdo last updated on 20/Dec/21
S_n =Σ_(k=1) ^n  (((−1)^(k+1) )/(k(k+2))) ⇒S_n =(1/2)Σ_(k=1) ^n ((1/k)−(1/(k+2)))(−1)^(k+1)   =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k) +(1/2)Σ_(k=1) ^(n ) (((−1)^k )/(k+2)) (→k+2=p)  =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k)+(1/2)Σ_(p=3) ^(n+2) (((−1)^p )/p)  =−(1/2)Σ_(k=1) ^n  (((−1)^k )/k)+(1/2){Σ_(p=1) ^n  (((−1)^p )/p)−(−1+(1/2))+(((−1)^n )/(n+2))}  =(1/2){(1/2)+(((−1)^n )/(n+2))} ⇒lim_(n→+∞) S_n =(1/4)
Sn=k=1n(1)k+1k(k+2)Sn=12k=1n(1k1k+2)(1)k+1=12k=1n(1)kk+12k=1n(1)kk+2(k+2=p)=12k=1n(1)kk+12p=3n+2(1)pp=12k=1n(1)kk+12{p=1n(1)pp(1+12)+(1)nn+2}=12{12+(1)nn+2}limn+Sn=14

Leave a Reply

Your email address will not be published. Required fields are marked *