Menu Close

n-1-1-n-2-




Question Number 32755 by 7991 last updated on 01/Apr/18
Σ_(n=1) ^∞  (1/n^2 ) = ....???
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\:….??? \\ $$
Commented by Rio Mike last updated on 01/Apr/18
solution  n=1⇒ (1/1^2 )  n=2⇒ (1/2^2 )  n=3⇒(1/2^3 )  the GP is 1,(1/4),(1/8),...  S_∞ =(a/(1−r))  ⇒(1/(1−(1/4)))  = 1 ×(4/3)  =(4/3)
$$\mathrm{solution} \\ $$$$\mathrm{n}=\mathrm{1}\Rightarrow\:\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} } \\ $$$$\mathrm{n}=\mathrm{2}\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} } \\ $$$$\mathrm{n}=\mathrm{3}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} } \\ $$$$\mathrm{the}\:\mathrm{GP}\:\mathrm{is}\:\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{8}},… \\ $$$$\mathrm{S}_{\infty} =\frac{\mathrm{a}}{\mathrm{1}−\mathrm{r}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\:\mathrm{1}\:×\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Commented by abdo imad last updated on 01/Apr/18
Σ_(n=1) ^∞   (1/n^2 ) =ξ(2)= (π^2 /6)  with ξ(x)=Σ_(n=1) ^∞  (1/n^x )  with x>1   you will find the proof in this platform.
$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\xi\left(\mathrm{2}\right)=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:\:{with}\:\xi\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:{with}\:{x}>\mathrm{1}\: \\ $$$${you}\:{will}\:{find}\:{the}\:{proof}\:{in}\:{this}\:{platform}. \\ $$
Commented by abdo imad last updated on 01/Apr/18
your answer is not correct Rio sir....
$${your}\:{answer}\:{is}\:{not}\:{correct}\:{Rio}\:{sir}…. \\ $$
Commented by JDamian last updated on 05/Apr/18
Isn′t this known as Basel′s problem?
$${Isn}'{t}\:{this}\:{known}\:{as}\:{Basel}'{s}\:{problem}? \\ $$
Commented by Rasheed.Sindhi last updated on 05/Apr/18
1,(1/4),(1/8),... is not GP  ∵ (1/4)÷1≠(1/8)÷(1/4)        (1/4)≠(1/2)
$$\mathrm{1},\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{8}},…\:\mathrm{is}\:\mathrm{not}\:\mathrm{GP} \\ $$$$\because\:\frac{\mathrm{1}}{\mathrm{4}}\boldsymbol{\div}\mathrm{1}\neq\frac{\mathrm{1}}{\mathrm{8}}\boldsymbol{\div}\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{4}}\neq\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *