Menu Close

n-1-1-n-2-1-1-2-1-3-1-n-2-




Question Number 147737 by liberty last updated on 23/Jul/21
 Σ_(n≥1)  (1/n^2 )(1+(1/2)+(1/3)+...+(1/n))^2 =?
$$\:\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} =? \\ $$
Answered by ArielVyny last updated on 24/Jul/21
(Σ_(n≥1) (1/n))^2 ≤Σ(1/n^2 )=(π^2 /6)  (Σ_(n≥1) (1/n))^2 Σ_(n≥1) (1/n^2 )≤(π^4 /(36))
$$\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} \leqslant\Sigma\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\left(\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}}\right)^{\mathrm{2}} \underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\leqslant\frac{\pi^{\mathrm{4}} }{\mathrm{36}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *