Menu Close

n-1-1-n-2-1-n-2-1-n-2-1-




Question Number 121326 by Dwaipayan Shikari last updated on 06/Nov/20
((Σ_(n=1) ^∞ (1/(n^2 +1)))/(Σ_(n=2) ^∞ (1/(n^2 −1))))
n=11n2+1n=21n21
Commented by Dwaipayan Shikari last updated on 06/Nov/20
Σ_(n=2) ^∞ (1/(n^2 −1))=(1/2)(Σ_(n=2) ^∞ (1/(n−1))−Σ_(n=2) ^∞ (1/(n+1)))=(1/2)(1+(1/2)+(1/3)+...−(1/3)−(1/4)−...)  =(3/4)  Σ_(n=1) ^∞ (1/(n^2 +1))=(1/(2i))Σ_(n=1) ^∞ (1/(n−i))−(1/(n+i))  =(1/(2i))Σ_(n=2) ^∞ ((1/n)−(1/(n−i−1)))−(1/(2i))Σ_(n=2) ^∞ ((1/n)−(1/(n+i−1)))  =(1/(2i))(ψ(i)−ψ(1−i))  =(1/(2i))(−πcot(iπ))+i) = (1/(2i))(−πcot(iπ)+1))=(π/2)cothπ+(1/2)  [Γ(s)Γ(1−s)=(π/(sinπs))]  [log(Γ(s)+log(Γ(1−s))=logπ−log(sinπs)]  [((Γ′(s))/(Γ(s)))−((Γ′(1−s))/(Γ(1−s)))=−((πcossπs)/(sinπs))]  [𝛙(1−s)−𝛙(s)=πcotπs]
n=21n21=12(n=21n1n=21n+1)=12(1+12+13+1314)=34n=11n2+1=12in=11ni1n+i=12in=2(1n1ni1)12in=2(1n1n+i1)=12i(ψ(i)ψ(1i))=12i(πcot(iπ))+i)=12i(πcot(iπ)+1))=π2cothπ+12[Γ(s)Γ(1s)=πsinπs][log(Γ(s)+log(Γ(1s))=logπlog(sinπs)][Γ(s)Γ(s)Γ(1s)Γ(1s)=πcossπssinπs][ψ(1s)ψ(s)=πcotπs]
Commented by Dwaipayan Shikari last updated on 06/Nov/20
Is it right?
Isitright?
Commented by mathmax by abdo last updated on 06/Nov/20
perhaps your answer is correct..!
perhapsyouransweriscorrect..!
Answered by mathmax by abdo last updated on 06/Nov/20
let f(x) =e^(−∣x∣)  function 2π periodic even we have  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  with a_n =(2/T)∫_T f(x)cos(nx)dx  =(2/(2π))∫_(−π) ^π  e^(−∣x∣)  cos(nx)dx =(2/π)∫_0 ^π  e^(−x)  cos(nx)dx  ⇒(π/2) a_n = Re(∫_0 ^π  e^(−x+inx) dx) and ∫_0 ^π  e^((−1+in)x) dx  =[(1/(−1+in)) e^((−1+in)x) ]_0 ^π  =((−1)/(1−in)){ e^((−1+in)π) −1}  =−((1+in)/(1+n^2 )){(−1)^n  e^(−π) −1} =((1−(−1)^n e^(−π) )/(1+n^2 )) +i(...) ⇒  a_n =(2/π)×((1−(−1)^n  e^(−π) )/(1+n^2 )) ⇒  a_0 =(2/π)(1−e^(−π) ) ⇒(a_0 /2)=((1−e^(−π) )/π) ⇒  e^(−∣x∣)  =((1−e^(−π) )/π) +(2/π)Σ_(n=1) ^∞  ((1−(−1)^n e^(−π) )/(1+n^2 )) cos(nx) ⇒  x=0 ⇒1 =((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞  (1/(1+n^2 )) −((2e^(−π) )/π)Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))  ⇒1 =((1−e^(−π) )/π) +(2/π)x −((2e^(−π) )/π)y  x=π ⇒e^(−π)  =((1−e^(−π) )/2) +(2/π)Σ_(n=1) ^∞ (−1)^n ((1−(−1)^n e^(−π) )/(n^2  +1)) ⇒  e^(−π)  =((1−e^(−π) )/2) +(2/π)Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))−((2e^(−π) )/π)Σ_(n=1) ^∞  (1/(n^2  +1))  =((1−e^(−π) )/2) +(2/π)y−((2e^(−π) )/π) x  we get the system   { (((2/π)x−((2e^(−π) )/π)y =1−((1−e^(−π) )/π)     ⇒)),((−((2e^(−π) )/π)x+(2/π)y =e^(−π) −((1−e^(−π) )/2))) :}   { ((2x−2e^(−π) y =π−1+e^(−π) )),((−2e^(−π)  x +2y =πe^(−π) −((π−πe^(−π) )/2))) :}  Δ_s =4−4e^(−2π)  ⇒x=(Δ_x /Δ)  Δ_x = determinant (((π−1+e^(−π)           −2e^(−π)    )),((πe^(−π) −((π−πe^(−π) )/2)      2)))=....  x =Σ_(n=1) ^∞  (1/(n^2  +1))   ....be continued...
letf(x)=exfunction2πperiodicevenwehavef(x)=a02+n=1ancos(nx)withan=2TTf(x)cos(nx)dx=22πππexcos(nx)dx=2π0πexcos(nx)dxπ2an=Re(0πex+inxdx)and0πe(1+in)xdx=[11+ine(1+in)x]0π=11in{e(1+in)π1}=1+in1+n2{(1)neπ1}=1(1)neπ1+n2+i()an=2π×1(1)neπ1+n2a0=2π(1eπ)a02=1eππex=1eππ+2πn=11(1)neπ1+n2cos(nx)x=01=1eππ+2πn=111+n22eππn=1(1)nn2+11=1eππ+2πx2eππyx=πeπ=1eπ2+2πn=1(1)n1(1)neπn2+1eπ=1eπ2+2πn=1(1)nn2+12eππn=11n2+1=1eπ2+2πy2eππxwegetthesystem{2πx2eππy=11eππ2eππx+2πy=eπ1eπ2{2x2eπy=π1+eπ2eπx+2y=πeπππeπ2Δs=44e2πx=ΔxΔΔx=|π1+eπ2eππeπππeπ22|=.x=n=11n2+1.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *