n-1-1-n-2-n-n-n-1-n-2- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 182794 by mnjuly1970 last updated on 14/Dec/22 Ω=∑∞n=1(−1)n2n.n(n+1)(n+2)=? Answered by ARUNG_Brandon_MBU last updated on 14/Dec/22 S(x)=∑∞n=1xn+2n(n+1)(n+2)⇒S′(x)=∑∞n=1xn+1n(n+1)⇒S″(x)=∑∞n=1xnn⇒S‴(x)=∑∞n=1xn−1=11−x⇒S″(x)=∑∞n=1xnn=−ln(1−x)+C1,C1=0⇒S′(x)=∑∞n=1xn+1n(n+1)=(1−x)ln(1−x)+x−1+C2,C2=1⇒S′(x)=ln(1−x)−xln(1−x)+x⇒S(x)=∫[−xln(1−x)+ln(1−x)+x]dx⇒S(x)=−x22ln(1−x)+12(x22+x+ln∣x−1∣)+(1−x)−(1−x)ln(1−x)+x22+C3,C3=−1⇒∑∞n=1(−1)n2nn(n+1)(n+2)=22S(−12)=−12ln(32)+2(18−12+ln(32))+6−6ln(32)+12−4⇒Ω=74−92ln(32) Commented by mnjuly1970 last updated on 14/Dec/22 grateful.thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-51720Next Next post: Find-the-range-of-value-of-x-given-that-x-i-1-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.