Menu Close

n-1-1-n-2-n-n-n-1-n-2-




Question Number 182794 by mnjuly1970 last updated on 14/Dec/22
         Ω = Σ_(n=1) ^∞  (( (−1_ ^  )^( n) )/(2^( n) .n(n+_ ^ 1)(n+_ ^ 2))) = ?
Ω=n=1(1)n2n.n(n+1)(n+2)=?
Answered by ARUNG_Brandon_MBU last updated on 14/Dec/22
S(x)=Σ_(n=1) ^∞ (x^(n+2) /(n(n+1)(n+2))) ⇒S ′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n(n+1)))  ⇒S ′′(x)=Σ_(n=1) ^∞ (x^n /n) ⇒S ′′′(x)=Σ_(n=1) ^∞ x^(n−1) =(1/(1−x))  ⇒S ′′(x)=Σ_(n=1) ^∞ (x^n /n)=−ln(1−x)+C_1 , C_1 =0  ⇒S ′(x)=Σ_(n=1) ^∞ (x^(n+1) /(n(n+1)))=(1−x)ln(1−x)+x−1+C_2 , C_2 =1  ⇒S ′(x)=ln(1−x)−xln(1−x)+x  ⇒S(x)=∫[−xln(1−x)+ln(1−x)+x]dx  ⇒S(x)=−(x^2 /2)ln(1−x)+(1/2)((x^2 /2)+x+ln∣x−1∣)                   +(1−x)−(1−x)ln(1−x)+(x^2 /2)+C_3 , C_3 =−1  ⇒Σ_(n=1) ^∞ (((−1)^n )/(2^n n(n+1)(n+2)))=2^2 S(−(1/2))  =−(1/2)ln((3/2))+2((1/8)−(1/2)+ln((3/2)))+6−6ln((3/2))+(1/2)−4  ⇒Ω=(7/4)−(9/2)ln((3/2))
S(x)=n=1xn+2n(n+1)(n+2)S(x)=n=1xn+1n(n+1)S(x)=n=1xnnS(x)=n=1xn1=11xS(x)=n=1xnn=ln(1x)+C1,C1=0S(x)=n=1xn+1n(n+1)=(1x)ln(1x)+x1+C2,C2=1S(x)=ln(1x)xln(1x)+xS(x)=[xln(1x)+ln(1x)+x]dxS(x)=x22ln(1x)+12(x22+x+lnx1)+(1x)(1x)ln(1x)+x22+C3,C3=1n=1(1)n2nn(n+1)(n+2)=22S(12)=12ln(32)+2(1812+ln(32))+66ln(32)+124Ω=7492ln(32)
Commented by mnjuly1970 last updated on 14/Dec/22
grateful.thank you sir
grateful.thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *