Menu Close

n-1-1-n-3-1-




Question Number 114043 by Dwaipayan Shikari last updated on 16/Sep/20
Σ_(n=1) ^∞ (1/(n^3 +1))
n=11n3+1
Answered by maths mind last updated on 21/Sep/20
Σ_(n≥1) (1/((n+1)(n−j)(n−j^− )))  Σ_(n≥1) {(1/(3(n+1)))+(1/(3j^2 (n−j)))+(1/(3j^−^2  (n−j^− )))}  =Σ_(n≥1) {(1/(3(n+1)))+(j/(3(n−j^− )))+(j^− /(3(n−j^− )))}  we can Write it  as Σ_(n≥1) Σ_(w:(w^3 +1=0)) ((1/(3w^2 (n−w))))  =(1/3)Σ_(n≥1) Σ_(w:(w^3 +1=0)) (((−w)/((n−w)))+(w/(n+1)))=Σ_(n≥0) (1/(n^3 +1))  since Σ_(w:(w^3 +1)) w=0   Σ_(n≥0) (1/(n^3 +1))=(1/3)Σ_(n≥0) Σ_(w:(w^3 +1)) (((−w)/(n−w))+(w/(n+1)))  =(1/3)Σ_w wΣ_(n≥0) (((−1)/(n−w))+(1/(n+1)))  =(1/3)Σ_w w(Ψ(−w)+γ)  𝚿 digamma function Ψ(x)=((Γ′(x))/(Γ(x)))  =Σ_(w:(w^3 +1=0)) ((wΨ(−w))/3)+(γ/3)Σ_(w:(w^3 +1=0)) w_(=0)   we get  Σ_(w:(w^3 +1=0)) (w/3)Ψ(−w)=−(1/3)Ψ(1)+((1+i(√3))/6)Ψ(−((1+i(√3))/2))  +((1−i(√3))/6)Ψ(((−1+i(√3))/2))⋍0.6865
n11(n+1)(nj)(nj)n1{13(n+1)+13j2(nj)+13j2(nj)}=n1{13(n+1)+j3(nj)+j3(nj)}wecanWriteitasn1w:(w3+1=0)(13w2(nw))=13n1w:(w3+1=0)(w(nw)+wn+1)=n01n3+1sincew:(w3+1)w=0n01n3+1=13n0w:(w3+1)(wnw+wn+1)=13wwn0(1nw+1n+1)=13ww(Ψ(w)+γ)ΨdigammafunctionΨ(x)=Γ(x)Γ(x)=w:(w3+1=0)wΨ(w)3+γ3w:(w3+1=0)w=0wegetw:(w3+1=0)w3Ψ(w)=13Ψ(1)+1+i36Ψ(1+i32)+1i36Ψ(1+i32)0.6865

Leave a Reply

Your email address will not be published. Required fields are marked *