n-1-1-n-3-1- Tinku Tara June 4, 2023 Vector Calculus 0 Comments FacebookTweetPin Question Number 114043 by Dwaipayan Shikari last updated on 16/Sep/20 ∑∞n=11n3+1 Answered by maths mind last updated on 21/Sep/20 ∑n⩾11(n+1)(n−j)(n−j−)∑n⩾1{13(n+1)+13j2(n−j)+13j−2(n−j−)}=∑n⩾1{13(n+1)+j3(n−j−)+j−3(n−j−)}wecanWriteitas∑n⩾1∑w:(w3+1=0)(13w2(n−w))=13∑n⩾1∑w:(w3+1=0)(−w(n−w)+wn+1)=∑n⩾01n3+1since∑w:(w3+1)w=0∑n⩾01n3+1=13∑n⩾0∑w:(w3+1)(−wn−w+wn+1)=13∑ww∑n⩾0(−1n−w+1n+1)=13∑ww(Ψ(−w)+γ)ΨdigammafunctionΨ(x)=Γ′(x)Γ(x)=∑w:(w3+1=0)wΨ(−w)3+γ3∑w:(w3+1=0)w=0weget∑w:(w3+1=0)w3Ψ(−w)=−13Ψ(1)+1+i36Ψ(−1+i32)+1−i36Ψ(−1+i32)⋍0.6865 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-48501Next Next post: advanced-calculus-i-prove-that-0-1-ln-1-ln-1-x-ln-1-x-dx-n-1-n-1-n-2-ii-prove-that-0-1-ln-1-x-x-1 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.