Question Number 158691 by mnjuly1970 last updated on 07/Nov/21
$$ \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} \:\mathcal{H}_{\:\mathrm{2}{n}} }{\mathrm{2}{n}}\:=? \\ $$
Answered by qaz last updated on 08/Nov/21
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}}\mathrm{H}_{\mathrm{2n}} \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2n}−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{ln}\left(\mathrm{1}−\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{ln}\left(\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)−\mathrm{lncos}\:\mathrm{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{ln}\left(\sqrt{\mathrm{2}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{x}\right)\right)−\mathrm{lncos}\:\mathrm{xdx} \\ $$$$=\frac{\pi}{\mathrm{8}}\mathrm{ln2}+\int_{\mathrm{0}} ^{\pi/\mathrm{4}} \mathrm{lntan}\:\mathrm{xdx} \\ $$$$=\frac{\pi}{\mathrm{8}}\mathrm{ln2}−\mathrm{G} \\ $$
Commented by mnjuly1970 last updated on 08/Nov/21
$${very}\:{nice}\:{sir}\:{qaz} \\ $$