Question Number 46187 by annika0209 last updated on 22/Oct/18
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}×\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{n}}} }=?\:\:\:\:\:\:\:\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}!!!! \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 22/Oct/18
$${let}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}\:{k}^{\frac{\mathrm{1}}{{k}}} }\:\:\:{the}\:{sequence}\:{u}_{{k}} =\frac{\mathrm{1}}{{k}.{k}^{\frac{\mathrm{1}}{{k}}} }\:{is}\:{decreasing}\:\Rightarrow \\ $$$$\:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant\:{f}\left({k}\right)\:\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dt}}{{t}\:.{t}^{\frac{\mathrm{1}}{{t}}} }\leqslant\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}.{k}^{\frac{\mathrm{1}}{{k}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{tt}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow \\ $$$$\int_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\int_{\mathrm{1}} ^{{n}} \:\:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow\mathrm{1}+\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\leqslant\mathrm{1}+\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} } \\ $$$${but}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}^{\mathrm{1}+\frac{\mathrm{1}}{{t}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{e}^{\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} } \\ $$$$=\:\int_{\mathrm{1}} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} {dt}\:{changement}\:{t}\:=\frac{\mathrm{1}}{{x}}\:{give} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} {dt}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)} \:\left(−\frac{{dx}}{{x}^{\mathrm{2}} }\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)} }{{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}\:{x}^{{x}} }{{x}^{\mathrm{2}} }{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{x}−\mathrm{1}} \:{dx}\:\:….{be}\:{continued}… \\ $$