Menu Close

n-1-1-n-n-1-n-please-help-me-




Question Number 46187 by annika0209 last updated on 22/Oct/18
Σ_(n=1) ^∞ (1/(n×n^(1/n) ))=?        please help me!!!!
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}×\mathrm{n}^{\frac{\mathrm{1}}{\mathrm{n}}} }=?\:\:\:\:\:\:\:\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}!!!! \\ $$$$ \\ $$
Commented by maxmathsup by imad last updated on 22/Oct/18
let  S_n =Σ_(k=1) ^n  (1/(k k^(1/k) ))   the sequence u_k =(1/(k.k^(1/k) )) is decreasing ⇒    ∫_k ^(k+1)   (dt/(t t^(1/t) )) ≤ f(k) ≤ ∫_(k−1) ^k  (dt/(t t^(1/t) )) ⇒ Σ_(k=2) ^n  ∫_k ^(k+1)  (dt/(t .t^(1/t) ))≤Σ_(k=2) ^n  (1/(k.k^(1/k) )) ≤ Σ_(k=2) ^n  ∫_(k−1) ^k  (dt/(tt^(1/t) )) ⇒  ∫_2 ^(n+1)    (dt/(t.t^(1/t) )) ≤ S_n −1 ≤ ∫_1 ^n    (dt/(t t^(1/t) )) ⇒1+ ∫_2 ^(+∞)   (dt/(t.t^(1/t) )) ≤lim_(n→+∞)  S_n  ≤1+∫_1 ^(+∞)   (dt/(t.t^(1/t) ))  but ∫_1 ^(+∞)    (dt/(t t^(1/t) )) =∫_1 ^(+∞)   (dt/t^(1+(1/t)) ) =∫_1 ^(+∞)    (dt/e^((1+(1/t))ln(t)) )  = ∫_1 ^(+∞)   e^(−(1+(1/t))ln(t)) dt changement t =(1/x) give  ∫_1 ^(+∞)   e^(−(1+(1/t))ln(t)) dt = −∫_0 ^1   e^((1+x)ln(x))  (−(dx/x^2 ))= ∫_0 ^1    (e^((1+x)ln(x)) /x^2 )dx  = ∫_0 ^1     ((x x^x )/x^2 )dx = ∫_0 ^1   x^(x−1)  dx  ....be continued...
$${let}\:\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}\:{k}^{\frac{\mathrm{1}}{{k}}} }\:\:\:{the}\:{sequence}\:{u}_{{k}} =\frac{\mathrm{1}}{{k}.{k}^{\frac{\mathrm{1}}{{k}}} }\:{is}\:{decreasing}\:\Rightarrow \\ $$$$\:\:\int_{{k}} ^{{k}+\mathrm{1}} \:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant\:{f}\left({k}\right)\:\leqslant\:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}} ^{{k}+\mathrm{1}} \:\frac{{dt}}{{t}\:.{t}^{\frac{\mathrm{1}}{{t}}} }\leqslant\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{{k}.{k}^{\frac{\mathrm{1}}{{k}}} }\:\leqslant\:\sum_{{k}=\mathrm{2}} ^{{n}} \:\int_{{k}−\mathrm{1}} ^{{k}} \:\frac{{dt}}{{tt}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow \\ $$$$\int_{\mathrm{2}} ^{{n}+\mathrm{1}} \:\:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant\:{S}_{{n}} −\mathrm{1}\:\leqslant\:\int_{\mathrm{1}} ^{{n}} \:\:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:\Rightarrow\mathrm{1}+\:\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} }\:\leqslant{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} \:\leqslant\mathrm{1}+\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}.{t}^{\frac{\mathrm{1}}{{t}}} } \\ $$$${but}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}\:{t}^{\frac{\mathrm{1}}{{t}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dt}}{{t}^{\mathrm{1}+\frac{\mathrm{1}}{{t}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{e}^{\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} } \\ $$$$=\:\int_{\mathrm{1}} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} {dt}\:{changement}\:{t}\:=\frac{\mathrm{1}}{{x}}\:{give} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:{e}^{−\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right){ln}\left({t}\right)} {dt}\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{e}^{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)} \:\left(−\frac{{dx}}{{x}^{\mathrm{2}} }\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)} }{{x}^{\mathrm{2}} }{dx} \\ $$$$=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{x}\:{x}^{{x}} }{{x}^{\mathrm{2}} }{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:{x}^{{x}−\mathrm{1}} \:{dx}\:\:….{be}\:{continued}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *