Menu Close

n-1-1-n-n-2n-1-




Question Number 145345 by qaz last updated on 04/Jul/21
Σ_(n=1) ^∞ (((−1)^n n)/((2n+1)!))=?
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}}{\left(\mathrm{2n}+\mathrm{1}\right)!}=? \\ $$
Answered by Olaf_Thorendsen last updated on 04/Jul/21
sinx = Σ_(n=0) ^n (−1)^n (x^(2n+1) /((2n+1)!))  ((sinx)/x) = Σ_(n=0) ^n (−1)^n (x^(2n) /((2n+1)!))  ((sin(√x))/( (√x))) = Σ_(n=0) ^n (−1)^n (x^n /((2n+1)!))  (d/dx)(((sin(√x))/( (√x)))) = Σ_(n=1) ^n (−1)^n ((nx^(n−1) )/((2n+1)!))  ((((1/(2(√x)))cos(√x))(√x)−(1/(2(√x)))sin(√x))/x) =  Σ_(n=1) ^n (−1)^n ((nx^(n−1) )/((2n+1)!))  For x = 1  (1/2)(cos(1)−sin(1)) =  Σ_(n=1) ^n (((−1)^n n)/((2n+1)!))
$$\mathrm{sin}{x}\:=\:\underset{{n}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{\mathrm{sin}{x}}{{x}}\:=\:\underset{{n}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{\mathrm{sin}\sqrt{{x}}}{\:\sqrt{{x}}}\:=\:\underset{{n}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{x}^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{{d}}{{dx}}\left(\frac{\mathrm{sin}\sqrt{{x}}}{\:\sqrt{{x}}}\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{nx}^{{n}−\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{\left(\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}\mathrm{cos}\sqrt{{x}}\right)\sqrt{{x}}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}\mathrm{sin}\sqrt{{x}}}{{x}}\:=\:\:\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{n}} \frac{{nx}^{{n}−\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\mathrm{For}\:{x}\:=\:\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\left(\mathrm{1}\right)−\mathrm{sin}\left(\mathrm{1}\right)\right)\:=\:\:\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {n}}{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *