Question Number 107783 by Dwaipayan Shikari last updated on 12/Aug/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} } \\ $$
Commented by Dwaipayan Shikari last updated on 12/Aug/20
$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{2}.\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}.\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}.\mathrm{2}^{\mathrm{4}} }+….. \\ $$$$=−\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}.\mathrm{2}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{2}^{\mathrm{3}} }−…\right) \\ $$$$=−{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$={log}\left(\mathrm{2}\right) \\ $$