Menu Close

n-1-1-n2-n-




Question Number 107783 by Dwaipayan Shikari last updated on 12/Aug/20
Σ_(n=1) ^∞ (1/(n2^n ))
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\mathrm{2}^{{n}} } \\ $$
Commented by Dwaipayan Shikari last updated on 12/Aug/20
(1/(1.2^1 ))+(1/(2.2^2 ))+(1/(3.2^3 ))+(1/(4.2^4 ))+.....  =−(−(1/2)−(1/(2.2^2 ))−(1/(3.2^3 ))−...)  =−log(1−(1/2))  =log(2)
$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}^{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{2}.\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}.\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{4}.\mathrm{2}^{\mathrm{4}} }+….. \\ $$$$=−\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}.\mathrm{2}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{3}.\mathrm{2}^{\mathrm{3}} }−…\right) \\ $$$$=−{log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$={log}\left(\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *