Menu Close

n-1-10000-1-n-n-1-




Question Number 126952 by Study last updated on 25/Dec/20
Σ_(n=1) ^(10000) (1/(n(n+1)))=???
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{10000}} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}=??? \\ $$
Commented by Study last updated on 25/Dec/20
help me
$${help}\:{me} \\ $$
Answered by Dwaipayan Shikari last updated on 25/Dec/20
Σ_(n=1) ^(10000) (1/n)−(1/(n+1))=(1−(1/2)+(1/2)−(1/3)+...−(1/(10001)))=((10000)/(10001))
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{10000}} {\sum}}\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+…−\frac{\mathrm{1}}{\mathrm{10001}}\right)=\frac{\mathrm{10000}}{\mathrm{10001}} \\ $$
Answered by Olaf last updated on 25/Dec/20
S = Σ_(n=1) ^(10000) (1/(n(n+1)))  S = Σ_(n=1) ^(10000) [(1/n)−(1/(n+1))]  S = (1/1)−(1/(10001)) = ((10000)/(10001))
$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{10000}} {\sum}}\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{10000}} {\sum}}\left[\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right] \\ $$$$\mathrm{S}\:=\:\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{10001}}\:=\:\frac{\mathrm{10000}}{\mathrm{10001}} \\ $$
Answered by bramlexs22 last updated on 25/Dec/20
 (1/(n(n+1))) = (1/n)−(1/(n+1))   Σ_(n=1) ^(10,000) ((1/n)−(1/(n+1))) = 1−(1/(10,001))
$$\:\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)}\:=\:\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\:\underset{{n}=\mathrm{1}} {\overset{\mathrm{10},\mathrm{000}} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\:=\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{10},\mathrm{001}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *