Menu Close

n-1-3-n-n-3-




Question Number 113789 by Khalmohmmad last updated on 15/Sep/20
Σ_(n=1) ^∝ (3/(n(n+3)))=?
n=13n(n+3)=?
Answered by aleks041103 last updated on 15/Sep/20
(3/(n(n+3)))=(((n+3)−n)/(n(n+3)))=(1/n)−(1/(n+3))  Σ_(n=1) ^∞ (3/(n(n+3)))=Σ_(n=1) ^∞ ((1/n)−(1/(n+3)))=  =(Σ_(n=1) ^∞ (1/n))−(Σ_(n=1) ^∞ (1/(n+3)))=  =(Σ_(n=1) ^∞ (1/n))−(Σ_(n=4) ^∞ (1/n))=  =(Σ_(n=1) ^3 (1/n) + Σ_(n=4) ^∞ (1/n))−(Σ_(n=4) ^∞ (1/n))=  =Σ_(n=1) ^3 (1/n)=(1/1)+(1/2)+(1/3)=((11)/6)  ⇒Σ_(n=1) ^∞ (3/(n(n+3)))=((11)/6)
3n(n+3)=(n+3)nn(n+3)=1n1n+3n=13n(n+3)=n=1(1n1n+3)==(n=11n)(n=11n+3)==(n=11n)(n=41n)==(3n=11n+n=41n)(n=41n)==3n=11n=11+12+13=116n=13n(n+3)=116
Answered by Dwaipayan Shikari last updated on 15/Sep/20
Σ_(n=1) ^∞ (((n+2))/(n(n+2)(n+3)))=Σ^∞ (1/(n+2))−(1/(n+3))+Σ^∞ (2/(n(n+2)(n+3)))  =((1/3)−0)+2Σ^∞ ((n+1)/(n(n+1)(n+2)(n+3)))  =(1/3)+2Σ^∞ (1/((n+1)(n+2)(n+3)))+2Σ^∞ (1/(n(n+1)(n+2)(n+3)))  =(1/3)+Σ^∞ ((n+3−n−1)/((n+1)(n+2)(n+3)))+(2/3)Σ^∞ ((n+3−n)/(n(n+1)(n+2)(n+3)))  =(1/3)+Σ^∞ (1/((n+1)(n+2)))−Σ^∞ (1/((n+2)(n+3)))+(2/3)Σ^∞ (1/(n(n+1)(n+2)))−(2/3)Σ^∞ (1/((n+1)(n+2)(n+3)))  =(1/3)+(1/2)−(1/3)+(1/3)Σ^∞ (1/(n(n+1)))−(1/((n+1)(n+2)))−(1/3)Σ^∞ (1/((n+1)(n+2)))−(1/((n+2)(n+3)))  =(1/2)+(1/3)(1−(1/2))−(1/3)((1/2))+(1/3).(1/3)  =(1/2)+(1/9)=((11)/(18))  So  Σ_(n=1) ^∞ (1/(n(n+3)))=((11)/(18))    so,Σ_(n=1) ^∞ (3/(n(n+3)))=((11)/6)
n=1(n+2)n(n+2)(n+3)=1n+21n+3+2n(n+2)(n+3)=(130)+2n+1n(n+1)(n+2)(n+3)=13+21(n+1)(n+2)(n+3)+21n(n+1)(n+2)(n+3)=13+n+3n1(n+1)(n+2)(n+3)+23n+3nn(n+1)(n+2)(n+3)=13+1(n+1)(n+2)1(n+2)(n+3)+231n(n+1)(n+2)231(n+1)(n+2)(n+3)=13+1213+131n(n+1)1(n+1)(n+2)131(n+1)(n+2)1(n+2)(n+3)=12+13(112)13(12)+13.13=12+19=1118Son=11n(n+3)=1118so,n=13n(n+3)=116

Leave a Reply

Your email address will not be published. Required fields are marked *