Menu Close

n-1-4n-2-10n-6-10n-4-2n-1-2-10n-1-10n-1-




Question Number 114758 by bobhans last updated on 21/Sep/20
Π_(n=1) ^∞  ((4n^2 (10n−6)(10n−4))/((2n−1)^2 (10n−1)(10n+1))) =?
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\:\frac{\mathrm{4}{n}^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{6}\right)\left(\mathrm{10}{n}−\mathrm{4}\right)}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{1}\right)\left(\mathrm{10}{n}+\mathrm{1}\right)}\:=? \\ $$
Answered by Olaf last updated on 21/Sep/20
u_n  = ((4n^2 (10n−6)(10n−4))/((2n−1)^2 (10n−1)(10n+1)))  u_n  = (((10n)^2 (10n−6)(10n−4))/((10n−5)^2 (10n−1)(10n+1)))  u_n  = (4/5)(((10n−0)(10n+0)(10n+4)(10n−4))/((10n+5)(10n−5)(10n−1)(10n+1)))  Let Π = Π_(n=1) ^∞ u_n   Π = (4/5)×((Π_(n=1) ^∞ (((10n+0)/(10n+1))×((10n+4)/(10n+5))))/(Π_(n=1) ^∞ (((10n−1)/(10n−0))×((10n−5)/(10n−4)))))  work in progress...
$${u}_{{n}} \:=\:\frac{\mathrm{4}{n}^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{6}\right)\left(\mathrm{10}{n}−\mathrm{4}\right)}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{1}\right)\left(\mathrm{10}{n}+\mathrm{1}\right)} \\ $$$${u}_{{n}} \:=\:\frac{\left(\mathrm{10}{n}\right)^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{6}\right)\left(\mathrm{10}{n}−\mathrm{4}\right)}{\left(\mathrm{10}{n}−\mathrm{5}\right)^{\mathrm{2}} \left(\mathrm{10}{n}−\mathrm{1}\right)\left(\mathrm{10}{n}+\mathrm{1}\right)} \\ $$$${u}_{{n}} \:=\:\frac{\mathrm{4}}{\mathrm{5}}\frac{\left(\mathrm{10}{n}−\mathrm{0}\right)\left(\mathrm{10}{n}+\mathrm{0}\right)\left(\mathrm{10}{n}+\mathrm{4}\right)\left(\mathrm{10}{n}−\mathrm{4}\right)}{\left(\mathrm{10}{n}+\mathrm{5}\right)\left(\mathrm{10}{n}−\mathrm{5}\right)\left(\mathrm{10}{n}−\mathrm{1}\right)\left(\mathrm{10}{n}+\mathrm{1}\right)} \\ $$$$\mathrm{Let}\:\Pi\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}{u}_{{n}} \\ $$$$\Pi\:=\:\frac{\mathrm{4}}{\mathrm{5}}×\frac{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{10}{n}+\mathrm{0}}{\mathrm{10}{n}+\mathrm{1}}×\frac{\mathrm{10}{n}+\mathrm{4}}{\mathrm{10}{n}+\mathrm{5}}\right)}{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{10}{n}−\mathrm{1}}{\mathrm{10}{n}−\mathrm{0}}×\frac{\mathrm{10}{n}−\mathrm{5}}{\mathrm{10}{n}−\mathrm{4}}\right)} \\ $$$$\mathrm{work}\:\mathrm{in}\:\mathrm{progress}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *