Menu Close

n-1-4n-3-n-2-2n-n-3-




Question Number 147572 by liberty last updated on 22/Jul/21
   Σ_(n≥1)  ((4n−3)/((n^2 +2n)(n+3))) =?
n14n3(n2+2n)(n+3)=?
Answered by mathmax by abdo last updated on 22/Jul/21
let S=Σ_(n=1) ^∞  ((4n−3)/(n(n+2)(n+3)))  let decompose F(x)=((4x−3)/(x(x+2)(x+3)))  F(x)=(a/x)+(b/(x+2))+(c/(x+3))  a=((−3)/6)=−(1/2)  , b=((−11)/((−2)(1)))=((11)/2)  , c=((−15)/((−3)(−1)))=−5 ⇒  F(x)=−(1/(2x)) +((11)/(2(x+2))) −(5/(x+3)) ⇒  Σ_(k=1) ^(n )  F(k) =−(1/2)Σ_(k=1) ^(n ) (1/k) +((11)/2)Σ_(k=1) ^n  (1/(k+2)) −5Σ_(k=1) ^n  (1/(k+3))=S_n   Σ_(k=1) ^n  (1/k)=H_n ,Σ_(k=1) ^n  (1/(k+2))=Σ_(k=3) ^(n+2)  (1/k)=H_(n+2) −(3/2)  Σ_(k=1) ^n  (1/(k+3))=Σ_(k=1) ^(n+4)  (1/k)=H_(n+4) −(3/2)−(1/3)=H_(n+4) −((11)/6) ⇒  S_n =−(1/2)H_n  +((11)/2)(H_(n+2) −(3/2))−5(H_(n+4) −((11)/6))  =−(1/2)H_n +((11)/2)H_(n+2) −((33)/4) +5H_(n+4) −((55)/6)  S_n =−(1/2)(logn +γ +o((1/n))+((11)/2)(log(n+2)+γ +o((1/(n+2))))  −5(log(n+4)+γ +o((1/(n+4))))−((33)/4)+((55)/6) ⇒  S_n ∼−(1/2)logn−(γ/2) +((11)/2)logn+((11)/2)log(1+(2/n))+((11γ)/2) −5log(n)−5log(1+(4/n))  −5γ−((33)/4)+((55)/6) ⇒S_n ∼((11)/2)log(1+(2/n))−5log(1+(4/n))−((33)/4)+((55)/6) ⇒  lim_(n→∞)  S_n =((55)/6)−((33)/4)
letS=n=14n3n(n+2)(n+3)letdecomposeF(x)=4x3x(x+2)(x+3)F(x)=ax+bx+2+cx+3a=36=12,b=11(2)(1)=112,c=15(3)(1)=5F(x)=12x+112(x+2)5x+3k=1nF(k)=12k=1n1k+112k=1n1k+25k=1n1k+3=Snk=1n1k=Hn,k=1n1k+2=k=3n+21k=Hn+232k=1n1k+3=k=1n+41k=Hn+43213=Hn+4116Sn=12Hn+112(Hn+232)5(Hn+4116)=12Hn+112Hn+2334+5Hn+4556Sn=12(logn+γ+o(1n)+112(log(n+2)+γ+o(1n+2))5(log(n+4)+γ+o(1n+4))334+556Sn12lognγ2+112logn+112log(1+2n)+11γ25log(n)5log(1+4n)5γ334+556Sn112log(1+2n)5log(1+4n)334+556limnSn=556334
Answered by qaz last updated on 22/Jul/21
Σ_(n=1) ^∞ ((4n−3)/(n(n+2)(n+3)))  =Σ_(n=1) ^∞ (−(1/(2n))+((11)/2)∙(1/(n+2))−5∙(1/(n+3)))  =Σ_(n=0) ^∞ (−(1/2)∙(1/(n+1))+((11)/2)∙(1/(n+3))−5∙(1/(n+4)))  =Σ_(n=0) ^∞ (−(1/2)∫_0 ^1 x^n dx+((11)/2)∫_0 ^1 x^(n+2) dx−5∫_0 ^1 x^(n+3) dx)  =−(1/2)∫_0 ^1 (dx/(1−x))dx+((11)/2)∫_0 ^1 (x^2 /(1−x))dx−5∫_0 ^1 (x^3 /(1−x))dx  =(1/2)∫_0 ^1 ((−1+11x^2 −10x^3 )/(1−x))dx  =−(1/2)∫_0 ^1 (1+x−10x^2 )dx  =((11)/(12))
n=14n3n(n+2)(n+3)=n=1(12n+1121n+251n+3)=n=0(121n+1+1121n+351n+4)=n=0(1201xndx+11201xn+2dx501xn+3dx)=1201dx1xdx+11201x21xdx501x31xdx=12011+11x210x31xdx=1201(1+x10x2)dx=1112

Leave a Reply

Your email address will not be published. Required fields are marked *