Menu Close

n-1-5n-n-2-3-




Question Number 144190 by mathdanisur last updated on 22/Jun/21
Σ_(n=1) ^∞  ((5n)/(n^2  + 3)) = ?
$$\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{5}{n}}{{n}^{\mathrm{2}} \:+\:\mathrm{3}}\:=\:? \\ $$
Answered by mathmax by abdo last updated on 23/Jun/21
this serie is divergent due to ((5n)/(n^2  +3))∼(5/n)
$$\mathrm{this}\:\mathrm{serie}\:\mathrm{is}\:\mathrm{divergent}\:\mathrm{due}\:\mathrm{to}\:\frac{\mathrm{5n}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{3}}\sim\frac{\mathrm{5}}{\mathrm{n}} \\ $$
Commented by mathdanisur last updated on 23/Jun/21
Sir, Σ_(n=1) ^∞ ((5n)/(n^2 +3)) = ∫_1 ^∞ ((5x)/(x^2 +3))dx .?
$${Sir},\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{5}{n}}{{n}^{\mathrm{2}} +\mathrm{3}}\:=\:\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{\mathrm{5}{x}}{{x}^{\mathrm{2}} +\mathrm{3}}{dx}\:.? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *