Menu Close

n-1-6-n-3-n-2-n-3-n-1-2-n-1-




Question Number 125256 by 676597498 last updated on 09/Dec/20
Σ_(n=1) ^∞ (6^n /((3^n −2^n )(3^(n+1) −2^(n+1) )))
n=16n(3n2n)(3n+12n+1)
Answered by mathmax by abdo last updated on 09/Dec/20
let u_n =(6^n /((3^n −2^n )(3^(n+1) −2^(n+1) ))) ⇒u_n =((3^n .2^n )/(3^n (1−((2/3))^n )3^(n+1) (1−((2/3))^(n+1) )))  =(2^n /(3^(n+1) (1−((2/3))^n )(1−((2/3))^(n+1) )))=(1/3)×((((2/3))^n )/((1−((2/3))^n )(1−((2/3))^(n+1) )))  (x/((1−x)(1−(2/3)x))) =3((1/(1−x))−(1/(1−(2/3)x))) ⇒  u_n =3((1/(1−((2/3))^n ))−(1/(1−((2/3))^(n+1) )))=3(v_n −v_(n+1) ) with v_n =(1/(1−((2/3))^n )) ⇒  Σ_(k=1) ^n  u_k =3 Σ_(k=1) ^n v_k −v_(k+1) =3{v_1 −v_2 +v_2 −v_3 +...+v_n −v_(n+1) }  =3(v_1 −v_(n+1) ) =3((1/(1−(2/3)))−(1/(1−((2/3))^(n+1) ))) ⇒  lim_(n→+∞) Σ_(k=1) ^n  u_k =3(3−1) =6
letun=6n(3n2n)(3n+12n+1)un=3n.2n3n(1(23)n)3n+1(1(23)n+1)=2n3n+1(1(23)n)(1(23)n+1)=13×(23)n(1(23)n)(1(23)n+1)x(1x)(123x)=3(11x1123x)un=3(11(23)n11(23)n+1)=3(vnvn+1)withvn=11(23)nk=1nuk=3k=1nvkvk+1=3{v1v2+v2v3++vnvn+1}=3(v1vn+1)=3(112311(23)n+1)limn+k=1nuk=3(31)=6

Leave a Reply

Your email address will not be published. Required fields are marked *