Menu Close

n-1-a-2-n-2-an-2-1-




Question Number 116626 by frc2crc last updated on 05/Oct/20
Π_(n=1) ^∞ (((a^2 n^2 )/((an)^2 −1))))=???
n=1(a2n2(an)21))=???
Answered by mnjuly1970 last updated on 05/Oct/20
solution    ((sin(πx))/(πx)) = Π_(n=) ^∞ (1−(x^2 /n^2 ))  ((πx)/(sin(πx))) = Π_(n=1 ) ^∞ (n^2 /(n^2 −x^2 ))   x=(1/a) ⇒ (π/(asin((π/a)))) =Π_(n=1) ^∞ (((a^2 n^2 )/(a^2 n^2 −1)))  m.n.1970
solutionsin(πx)πx=n=(1x2n2)πxsin(πx)=n=1n2n2x2x=1aπasin(πa)=n=1(a2n2a2n21)m.n.1970
Answered by Dwaipayan Shikari last updated on 05/Oct/20
Π_(n=1) ^∞ (1−(x^2 /n^2 ))=((sinπx)/(πx))  Π^∞ (((a^2 n^2 )/(a^2 n^2 −1)))=(1/(Π_(n=1) ^∞ (((a^2 n^2 −1)/(a^2 n^2 )))))  (1/(Π_(n=1) ^∞ (1−(1/(a^2 n^2 )))))=(1/((sin(π/a))/(π/a)))=(π/a)cosec(π/a)
n=1(1x2n2)=sinπxπx(a2n2a2n21)=1n=1(a2n21a2n2)1n=1(11a2n2)=1sinπaπa=πacosecπa

Leave a Reply

Your email address will not be published. Required fields are marked *