Question Number 116626 by frc2crc last updated on 05/Oct/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }{\left.\left({an}\right)^{\mathrm{2}} −\mathrm{1}\right)}\right)=??? \\ $$$$ \\ $$
Answered by mnjuly1970 last updated on 05/Oct/20
$${solution} \\ $$$$\:\:\frac{{sin}\left(\pi{x}\right)}{\pi{x}}\:=\:\underset{{n}=} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$$\frac{\pi{x}}{{sin}\left(\pi{x}\right)}\:=\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\prod}}\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{2}} −{x}^{\mathrm{2}} }\: \\ $$$${x}=\frac{\mathrm{1}}{{a}}\:\Rightarrow\:\frac{\pi}{{asin}\left(\frac{\pi}{{a}}\right)}\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }{{a}^{\mathrm{2}} {n}^{\mathrm{2}} −\mathrm{1}}\right) \\ $$$${m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 05/Oct/20
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right)=\frac{{sin}\pi{x}}{\pi{x}} \\ $$$$\overset{\infty} {\prod}\left(\frac{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }{{a}^{\mathrm{2}} {n}^{\mathrm{2}} −\mathrm{1}}\right)=\frac{\mathrm{1}}{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{{a}^{\mathrm{2}} {n}^{\mathrm{2}} −\mathrm{1}}{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }\right)} \\ $$$$\frac{\mathrm{1}}{\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} {n}^{\mathrm{2}} }\right)}=\frac{\mathrm{1}}{\frac{{sin}\frac{\pi}{{a}}}{\frac{\pi}{{a}}}}=\frac{\pi}{{a}}{cosec}\frac{\pi}{{a}} \\ $$