Menu Close

n-1-equal-point-masses-each-of-mass-m-are-placed-at-the-vertices-of-a-regular-n-polygon-The-vacant-vertex-has-a-position-vector-a-with-respect-to-the-centre-of-the-polygon-Find-the-position-vect




Question Number 24186 by Tinkutara last updated on 14/Nov/17
(n − 1) equal point masses each of mass  m are placed at the vertices of a regular  n-polygon. The vacant vertex has a  position vector a with respect to the  centre of the polygon. Find the position  vector of centre of mass.
$$\left({n}\:−\:\mathrm{1}\right)\:\mathrm{equal}\:\mathrm{point}\:\mathrm{masses}\:\mathrm{each}\:\mathrm{of}\:\mathrm{mass} \\ $$$${m}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{at}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular} \\ $$$${n}-\mathrm{polygon}.\:\mathrm{The}\:\mathrm{vacant}\:\mathrm{vertex}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{position}\:\mathrm{vector}\:{a}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polygon}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{position} \\ $$$$\mathrm{vector}\:\mathrm{of}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{mass}. \\ $$
Commented by mrW1 last updated on 14/Nov/17
−(1/(n−1))a
$$−\frac{\mathrm{1}}{{n}−\mathrm{1}}\boldsymbol{{a}} \\ $$
Commented by Tinkutara last updated on 14/Nov/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$
Commented by mrW1 last updated on 14/Nov/17
let′s say the center of (n−1)m is x  from the center of polygon. we know  if we also put a mass m at the vacant vertex,  then we have n mass m, and the  center of nm is the center of polygon.  (n−1)mg∣x∣=mg∣a∣  ⇒∣x∣=((∣a∣)/(n−1))  x is opposite to a  ⇒x=−(1/(n−1))a
$${let}'{s}\:{say}\:{the}\:{center}\:{of}\:\left({n}−\mathrm{1}\right){m}\:{is}\:{x} \\ $$$${from}\:{the}\:{center}\:{of}\:{polygon}.\:{we}\:{know} \\ $$$${if}\:{we}\:{also}\:{put}\:{a}\:{mass}\:{m}\:{at}\:{the}\:{vacant}\:{vertex}, \\ $$$${then}\:{we}\:{have}\:{n}\:{mass}\:{m},\:{and}\:{the} \\ $$$${center}\:{of}\:{nm}\:{is}\:{the}\:{center}\:{of}\:{polygon}. \\ $$$$\left({n}−\mathrm{1}\right){mg}\mid{x}\mid={mg}\mid{a}\mid \\ $$$$\Rightarrow\mid{x}\mid=\frac{\mid{a}\mid}{{n}−\mathrm{1}} \\ $$$${x}\:{is}\:{opposite}\:{to}\:{a} \\ $$$$\Rightarrow\boldsymbol{{x}}=−\frac{\mathrm{1}}{{n}−\mathrm{1}}\boldsymbol{{a}} \\ $$
Commented by mrW1 last updated on 14/Nov/17

Leave a Reply

Your email address will not be published. Required fields are marked *