Menu Close

n-1-H-n-2n-1-pi-2-2H-n-2-8H-2n-2-83-4-4-7log-2-3-8log-2-2-2-2-3-log-4-2-16-Li-4-1-2-where-H-n-m-1-1-2-m-1-n-m-represents-the-nth-gener




Question Number 88004 by M±th+et£s last updated on 07/Apr/20
Σ_(n=1) ^∞ (H_n /(2n+1))(π^2 +2H_n ^((2)) −8H_(2n) ^((2)) )  =((83)/4)ζ(4)−7log(2)ζ(3)−8log^2 (2)ζ(2)−(2/3)log^4 (2)−16 Li_4 ((1/2))  where H_n ^((m)) =1+(1/2^m )+.....+(1/n^m ) represents the nth generalized  harmonic number of order m , ζ denotes the Riemann  zeta function,and Li_n designates the poly logarithm
n=1Hn2n+1(π2+2Hn(2)8H2n(2))=834ζ(4)7log(2)ζ(3)8log2(2)ζ(2)23log4(2)16Li4(12)whereHn(m)=1+12m+..+1nmrepresentsthenthgeneralizedharmonicnumberoforderm,ζdenotestheRiemannzetafunction,andLindesignatesthepolylogarithm
Answered by mind is power last updated on 08/Apr/20
i will Try
iwillTry
Commented by M±th+et£s last updated on 08/Apr/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *