Menu Close

n-1-log-n-n-2-Does-the-series-converge-or-diverge-help-find-the-sum-




Question Number 46527 by Tawa1 last updated on 28/Oct/18
𝚺_(n= 1) ^∞  (((log n)/n))^2   Does the series converge or diverge,  help find the sum ...
n=1(lognn)2Doestheseriesconvergeordiverge,helpfindthesum
Commented by maxmathsup by imad last updated on 28/Oct/18
let ϕ(x)=(((ln(x))/x))^2  with x≥2 we have ϕ^′ (x)=2 ((ln(x))/x)(((ln(x))/x))^′   =((2lnx)/x){((1−ln(x))/x^2 )} <0 ϕ is decreasing on [2,+∞[ so Σ_(n=1) ^∞ ( ((ln(n))/n))^2  and  ∫_2 ^(+∞)  (((ln(x))/x))^2 dx have the same nature of convergence but  ∫_2 ^(+∞)  (((ln(x))^2 )/x^2 ) dx =_(ln(x)=t)    ∫_(ln(2)) ^()∞)    (t^2 /e^(2t) )  e^t  dt = ∫_(ln(2)) ^(+∞)  t^2  e^(−t) dt and this integral   converges ⇒ Σ_(n=1) ^∞  (((ln(n))/n))^2  converges.
letφ(x)=(ln(x)x)2withx2wehaveφ(x)=2ln(x)x(ln(x)x)=2lnxx{1ln(x)x2}<0φisdecreasingon[2,+[son=1(ln(n)n)2and2+(ln(x)x)2dxhavethesamenatureofconvergencebut2+(ln(x))2x2dx=ln(x)=tln(2))t2e2tetdt=ln(2)+t2etdtandthisintegralconvergesn=1(ln(n)n)2converges.
Commented by MJS last updated on 28/Oct/18
it seems that ∫_1 ^(+∞) (((ln x)/x))^2 dx=2
itseemsthat+1(lnxx)2dx=2
Commented by Tawa1 last updated on 28/Oct/18
God bless you sir
Godblessyousir
Commented by Tawa1 last updated on 28/Oct/18
Please how can i prove it is monotonic first sir
Pleasehowcaniproveitismonotonicfirstsir
Commented by math khazana by abdo last updated on 28/Oct/18
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *