Menu Close

n-1-m-1-m-2-n-3-m-3-n-m-3-m-n-find-




Question Number 192590 by York12 last updated on 22/May/23
  Σ_(n=1) ^∞ Σ_(m=1) ^∞ [((m^2 n)/(3^m (3^n .m+3^m .n)))]=λ   find λ.
n=1m=1[m2n3m(3n.m+3m.n)]=λfindλ.
Answered by witcher3 last updated on 24/May/23
(n,m)→^f ((m^2 n)/(3^m (3^n m+3^m n)))  ∀n∈Z_+ ,Σ_(m≥1) f(n,m)=nΣ_(m≥1) (m^2 /(3^m (3^n m+3^m n)))  ≤nΣ_(m≥1) (m^2 /3^m )=S  ∃N∈N   ∀m≥N,m^2 ≤2^m   S≤Σ_(m=1) ^(N−1) n(m^2 /3^m )+nΣ_N ((2/3))^m <∞  ∀m∈Z_+ f(n,m)=(m^2 /3^m )Σ(n/((3^n m+3^m n)))≤(m^2 /3^m )Σ(n/3^n )  Sam as previous <∞  ⇒Σ_n Σ_m =Σ_m Σ_n   ΣΣf(n,m)=ΣΣf(m,n)=S  2S=Σ_n Σ_m ((m^2 n)/(3^m (n3^m +m3^n )))+((n^2 m)/(3^n (n3^m +m3^n )))  =Σ_n Σ_m ((mn(m3^n +n3^m ))/(3^(m+n) (n3^m +m3^n )))=Σ_n (n/3^n )Σ(m/3^m )  (1/((1−x)^2 ))=Σ_(n≥1) nx^(n−1) ⇒(x/((1−x)^2 ))=Σnx^n   S=(((1/3)/((1−(1/3))^2 )))^2 =(9/(16))
(n,m)fm2n3m(3nm+3mn)nZ+,m1f(n,m)=nm1m23m(3nm+3mn)nm1m23m=SNNmN,m22mSN1m=1nm23m+nN(23)m<mZ+f(n,m)=m23mΣn(3nm+3mn)m23mΣn3nSamasprevious<nm=mnΣΣf(n,m)=ΣΣf(m,n)=S2S=nmm2n3m(n3m+m3n)+n2m3n(n3m+m3n)=nmmn(m3n+n3m)3m+n(n3m+m3n)=nn3nΣm3m1(1x)2=n1nxn1x(1x)2=ΣnxnS=(13(113)2)2=916
Commented by York12 last updated on 24/May/23
Great !  what book do you recommend for algebra
Great!whatbookdoyourecommendforalgebra
Commented by witcher3 last updated on 24/May/23
hello sir sorry for last times  not responding i have not telegram  book 1 introduce to matrix and linear algebra  2) for calculus  almost Impossible sum and integrals  contein hards problems !
hellosirsorryforlasttimesnotrespondingihavenottelegrambook1introducetomatrixandlinearalgebra2)forcalculusalmostImpossiblesumandintegralsconteinhardsproblems!
Commented by York12 last updated on 24/May/23
thanks so much , No problem
thankssomuch,Noproblem

Leave a Reply

Your email address will not be published. Required fields are marked *