Menu Close

n-1-n-1-n-1-




Question Number 163704 by mnjuly1970 last updated on 09/Jan/22
             Ω= Σ_(n=1) ^∞ n(ζ (1+n) −1) =?
Ω=n=1n(ζ(1+n)1)=?
Answered by Kamel last updated on 09/Jan/22
  Ψ(1+x)+(1/(1+x))=1−γ−(Σ_(n=1) ^(+∞) (ζ(n+1)−1)(−x)^n   ∴ lim_(x→−1) (Ψ^((1)) (1+x)−(1/((1+x)^2 )))=Σ_(n=1) ^(+∞) n(ζ(n+1−1)  Ψ^((1)) (1+x)=Σ_(k=0) ^(+∞) (1/((k+x+1)^2 ))=(1/((1+x)^2 ))+Σ_(k=1) ^(+∞) (1/((1+x+k)^2 ))  ∴ Σ_(n=1) ^(+∞) n(ζ(n+1)−1)=Σ_(k=1) ^(+∞) (1/k^2 )=(π^2 /6)
Ψ(1+x)+11+x=1γ(+n=1(ζ(n+1)1)(x)nlimx1(Ψ(1)(1+x)1(1+x)2)=+n=1n(ζ(n+11)Ψ(1)(1+x)=+k=01(k+x+1)2=1(1+x)2++k=11(1+x+k)2+n=1n(ζ(n+1)1)=+k=11k2=π26
Commented by mnjuly1970 last updated on 10/Jan/22
very nice solution...
verynicesolution
Answered by qaz last updated on 10/Jan/22
Σ_(n=1) ^∞ n(ζ(1+n)−1)  =Σ_(n=1) ^∞ Σ_(k=2) ^∞ (n/k^(1+n) )  =Σ_(k=2) ^∞ Σ_(n=0) ^∞ ((n+1)/k^(n+2) )  =Σ_(k=2) ^∞ (1/k^2 )(D+1)∣_(x=1/k) (1/(1−x))  =Σ_(k=2) ^∞ (1/k^2 )∙((2−(1/k))/((1−(1/k))^2 ))  =Σ_(k=1) ^∞ ((1/k^2 )+(1/k)−(1/(k+1)))  =(π^2 /6)+1
n=1n(ζ(1+n)1)=n=1k=2nk1+n=k=2n=0n+1kn+2=k=21k2(D+1)x=1/k11x=k=21k221k(11k)2=k=1(1k2+1k1k+1)=π26+1
Commented by mnjuly1970 last updated on 10/Jan/22
thank you so much sir      (π^( 2) /6)
thankyousomuchsirπ26

Leave a Reply

Your email address will not be published. Required fields are marked *