Menu Close

n-1-n-7-7-n-




Question Number 126977 by Dwaipayan Shikari last updated on 25/Dec/20
Σ_(n=1) ^∞ (n^7 /7^n )
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{7}} }{\mathrm{7}^{{n}} } \\ $$
Commented by MJS_new last updated on 25/Dec/20
=((285929)/(11664))
$$=\frac{\mathrm{285929}}{\mathrm{11664}} \\ $$
Answered by mindispower last updated on 25/Dec/20
(1/7^n )=e^(−nln(7))   S=Σ_(n=1) ^∞ (n^7 /7^n )  let f_n (x)=Σ_(n=0) ^∞ e^(nx) ,x<0  f_n (x)=(1/(1−e^x ))  g_n (x)=(∂^7 /∂x^7 )f_n (x)=Σ_(n=0) ^∞ n^7 e^(nx)   g_n (−ln(7))=Σ_(n≥0) n^7 .(1/7^n )=Σ_(n≥1) (n^7 /7^n )=S
$$\frac{\mathrm{1}}{\mathrm{7}^{{n}} }={e}^{−{nln}\left(\mathrm{7}\right)} \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{7}} }{\mathrm{7}^{{n}} } \\ $$$${let}\:{f}_{{n}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{e}^{{nx}} ,{x}<\mathrm{0} \\ $$$${f}_{{n}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}−{e}^{{x}} } \\ $$$${g}_{{n}} \left({x}\right)=\frac{\partial^{\mathrm{7}} }{\partial{x}^{\mathrm{7}} }{f}_{{n}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{n}^{\mathrm{7}} {e}^{{nx}} \\ $$$${g}_{{n}} \left(−{ln}\left(\mathrm{7}\right)\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}{n}^{\mathrm{7}} .\frac{\mathrm{1}}{\mathrm{7}^{{n}} }=\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{n}^{\mathrm{7}} }{\mathrm{7}^{{n}} }={S} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *