Menu Close

n-1-n-n-1-2-




Question Number 104174 by Dwaipayan Shikari last updated on 19/Jul/20
Π_(n=1) ^∞ ((n/(n+1)))^2
n=1(nn+1)2
Answered by OlafThorendsen last updated on 19/Jul/20
S_n  = Π_(k=1) ^n ((k/(k+1)))^2   S_n  = ((1/2))^2 ((2/3))^2 ((3/4))^2 ...((n/(n+1)))^2   S_n  = (1/((n+1)^2 ))  lim_(n→∞) S_n  = 0
Sn=nk=1(kk+1)2Sn=(12)2(23)2(34)2(nn+1)2Sn=1(n+1)2Double subscripts: use braces to clarify
Answered by mathmax by abdo last updated on 19/Jul/20
let S_n =Π_(k=1) ^n  (k^2 /((k+1)^2 )) ⇒ln(S_n ) =Σ_(k=1) ^n ln((k^2 /((k+1)^2 ))) =2Σ_(k=1) ^n { ln(k)−ln(k+1)}  =2 {ln1−ln(2)+ln(2)−ln(3)+...+ln(n)−ln(n+1)}  =−2ln(n+1)→−∞ ⇒lim_(n→+∞) ln(S_n ) =0 ⇒lim_(n→+∞) S_n =0
letSn=k=1nk2(k+1)2ln(Sn)=k=1nln(k2(k+1)2)=2k=1n{ln(k)ln(k+1)}=2{ln1ln(2)+ln(2)ln(3)++ln(n)ln(n+1)}=2ln(n+1)limn+ln(Sn)=0limn+Sn=0

Leave a Reply

Your email address will not be published. Required fields are marked *