Question Number 123167 by Dwaipayan Shikari last updated on 23/Nov/20

Commented by mathmax by abdo last updated on 23/Nov/20

Answered by liberty last updated on 23/Nov/20
![Σ_(n=1) ^∞ ((√n)/((n+1+(√n))(n+1−(√n)))) Σ_(t=1) ^∞ (t/((t^2 +t+1)(t^2 −t+1))) (1/2)Σ_(t=1) ^∞ (((t^2 +t+1)−(t^2 −t+1))/((t^2 +t+1)(t^2 −t+1))) (1/2)[ Σ_(t=1) ^∞ (1/(t^2 −t+1))−(1/(t^2 +t+1)) ] (1/2) [ 1−(1/3)+(1/3)−(1/7)+(1/7)−(1/(13))+(1/(13))−(1/(21))+... +0−0 ] (1/2)×1=(1/2)](https://www.tinkutara.com/question/Q123170.png)
Commented by Dwaipayan Shikari last updated on 23/Nov/20

Commented by mathmax by abdo last updated on 23/Nov/20

Commented by benjo_mathlover last updated on 23/Nov/20
![it should be Σ_(n=1) ^∞ ((√n)/((n+(√n)+1)(n−(√n)+1)))= Σ_(n=1) ^∞ (((n+(√n)+1)−(n−(√n)+1))/(2(n+(√n)+1)(n−(√n)+1)))= (1/2)Σ_(n=1) ^∞ (1/(n−(√n)+1)) − (1/(n+(√n)+1))= (1/2) [ 1−(1/3) + (1/(3−(√2)))−(1/(3+(√2)))+(1/(4−(√3)))−(1/(4+(√3)))+... ]](https://www.tinkutara.com/question/Q123196.png)