Menu Close

n-1-n-n-2-n-1-




Question Number 123167 by Dwaipayan Shikari last updated on 23/Nov/20
Σ_(n=1) ^∞ ((√n)/(n^2 +n+1))
n=1nn2+n+1
Commented by mathmax by abdo last updated on 23/Nov/20
Σ_(n=1) ^∞  ((√n)/(n^2  +n+1))=((√1)/3) +((√2)/(2^2  +2+1)) +((√3)/(3^2  +3+1))+.....
n=1nn2+n+1=13+222+2+1+332+3+1+..
Answered by liberty last updated on 23/Nov/20
 Σ_(n=1) ^∞  ((√n)/((n+1+(√n))(n+1−(√n))))   Σ_(t=1) ^∞ (t/((t^2 +t+1)(t^2 −t+1)))   (1/2)Σ_(t=1) ^∞  (((t^2 +t+1)−(t^2 −t+1))/((t^2 +t+1)(t^2 −t+1)))  (1/2)[ Σ_(t=1) ^∞  (1/(t^2 −t+1))−(1/(t^2 +t+1)) ]  (1/2) [ 1−(1/3)+(1/3)−(1/7)+(1/7)−(1/(13))+(1/(13))−(1/(21))+... +0−0 ]  (1/2)×1=(1/2)
n=1n(n+1+n)(n+1n)t=1t(t2+t+1)(t2t+1)12t=1(t2+t+1)(t2t+1)(t2+t+1)(t2t+1)12[t=11t2t+11t2+t+1]12[113+1317+17113+113121++00]12×1=12
Commented by Dwaipayan Shikari last updated on 23/Nov/20
But  ′t′ doesn′t sum up linearly    (1/2)Σ_(n=1) ^∞ (1/((n+1−(√n))))−(1/((n+1+(√n))))  =(1/2)Σ_(t=(√1)) ^∞ (1/(t^2 −t+1))−(1/(t^2 +t+1))  ′t′ will take take the value of (√1), (√2), (√3),  ....
Buttdoesntsumuplinearly12n=11(n+1n)1(n+1+n)=12t=11t2t+11t2+t+1twilltaketakethevalueof1,2,3,.
Commented by mathmax by abdo last updated on 23/Nov/20
answer not correct you can not use  (√n)=t  in sum its not a integral  ....!
answernotcorrectyoucannotusen=tinsumitsnotaintegral.!
Commented by benjo_mathlover last updated on 23/Nov/20
it should be   Σ_(n=1) ^∞ ((√n)/((n+(√n)+1)(n−(√n)+1)))=  Σ_(n=1) ^∞  (((n+(√n)+1)−(n−(√n)+1))/(2(n+(√n)+1)(n−(√n)+1)))=  (1/2)Σ_(n=1) ^∞  (1/(n−(√n)+1)) − (1/(n+(√n)+1))=  (1/2) [ 1−(1/3) + (1/(3−(√2)))−(1/(3+(√2)))+(1/(4−(√3)))−(1/(4+(√3)))+... ]
itshouldben=1n(n+n+1)(nn+1)=n=1(n+n+1)(nn+1)2(n+n+1)(nn+1)=12n=11nn+11n+n+1=12[113+13213+2+14314+3+]

Leave a Reply

Your email address will not be published. Required fields are marked *