Menu Close

n-1-n-n-n-




Question Number 102822 by Dwaipayan Shikari last updated on 11/Jul/20
Σ_(n=1) ^∞ ((n!)/n^n )
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}!}{{n}^{{n}} } \\ $$
Commented by Dwaipayan Shikari last updated on 11/Jul/20
RATIO TEST  a_(n+1.) .(1/a_n )=(((n+1)!)/((n+1)^(n+1) )).(n^n /(n!))=((n/(n+1)))^n   lim((1/(1+(1/n))))^n =(1+(1/n))^(−n) =(1/e)    n→∞  Second method  lim nlog((n/(n+1)))=logy  ⇒ n((n/(n+1))−1)=logy ⇒−1=logy⇒y=(1/e)  n→∞  Converges
$${RATIO}\:{TEST} \\ $$$${a}_{{n}+\mathrm{1}.} .\frac{\mathrm{1}}{{a}_{{n}} }=\frac{\left({n}+\mathrm{1}\right)!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }.\frac{{n}^{{n}} }{{n}!}=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} \\ $$$${lim}\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\right)^{{n}} =\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{−{n}} =\frac{\mathrm{1}}{{e}} \\ $$$$ \\ $$$${n}\rightarrow\infty \\ $$$${Second}\:{method} \\ $$$${lim}\:{nlog}\left(\frac{{n}}{{n}+\mathrm{1}}\right)={logy}\:\:\Rightarrow\:{n}\left(\frac{{n}}{{n}+\mathrm{1}}−\mathrm{1}\right)={logy}\:\Rightarrow−\mathrm{1}={logy}\Rightarrow{y}=\frac{\mathrm{1}}{{e}} \\ $$$${n}\rightarrow\infty \\ $$$${Converges} \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 11/Jul/20
convergence ?  let u_n =((n!)/n^n )   we have n! ∼ n^n  e^(−n)  (√(2πn))  (n→∞) ⇒  u_n ∼e^(−n) (√(2πn))   and Σ e^(−n) (√(2πn))is the same nature of ∫_0 ^∞  e^(−t) (√(2πt))dt but  ∫_0 ^∞  (√(2π)) e^(−t)  (√t)dt =(√(2π))∫_0 ^∞  t^((3/2)−1)  e^(−t)  dt =(√(2π))Γ((3/2)) this integral convergez ⇒  Σ u_n  converges..
$$\mathrm{convergence}\:?\:\:\mathrm{let}\:\mathrm{u}_{\mathrm{n}} =\frac{\mathrm{n}!}{\mathrm{n}^{\mathrm{n}} }\:\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{n}!\:\sim\:\mathrm{n}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{n}} \:\sqrt{\mathrm{2}\pi\mathrm{n}}\:\:\left(\mathrm{n}\rightarrow\infty\right)\:\Rightarrow \\ $$$$\mathrm{u}_{\mathrm{n}} \sim\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\:\:\:\mathrm{and}\:\Sigma\:\mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{nature}\:\mathrm{of}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{t}} \sqrt{\mathrm{2}\pi\mathrm{t}}\mathrm{dt}\:\mathrm{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\sqrt{\mathrm{2}\pi}\:\mathrm{e}^{−\mathrm{t}} \:\sqrt{\mathrm{t}}\mathrm{dt}\:=\sqrt{\mathrm{2}\pi}\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\sqrt{\mathrm{2}\pi}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:\mathrm{this}\:\mathrm{integral}\:\mathrm{convergez}\:\Rightarrow \\ $$$$\Sigma\:\mathrm{u}_{\mathrm{n}} \:\mathrm{converges}.. \\ $$
Commented by Dwaipayan Shikari last updated on 11/Jul/20
Can you find the sum sir?
$${Can}\:{you}\:{find}\:{the}\:{sum}\:{sir}? \\ $$
Commented by mathmax by abdo last updated on 12/Jul/20
perhaps by using some relation and formulas...
$$\mathrm{perhaps}\:\mathrm{by}\:\mathrm{using}\:\mathrm{some}\:\mathrm{relation}\:\mathrm{and}\:\mathrm{formulas}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *