Menu Close

n-2-1-1-n-2-




Question Number 63919 by raj last updated on 11/Jul/19
Π_(n=2) ^∞ (1−(1/n^2 ))=?
n=2(11n2)=?
Commented by Prithwish sen last updated on 11/Jul/19
Π_(n=2) ^(n=n)  (1−(1/n^2 )) = ((1.2.3^2 .4^2 ...........n.(n+1))/(1^2 .2^2 .3^2 ..........(n−1)^2 .n^2 ))   = [(((n+1)!)/(n!))]^2 .(1/(2n(n+1))) = (((n+1)^2 )/(2n(n+1)))  = (1/2)(1+(1/n)) → (1/2) as n→∞  please check.
n=\boldsymbolnn=2(11n2)=1.2.32.42..n.(n+1)12.22.32.(n1)2.n2=[(n+1)!n!]2.12n(n+1)=(n+1)22n(n+1)=12(1+1n)12asnpleasecheck.
Commented by mathmax by abdo last updated on 11/Jul/19
let A_n =Π_(k=2) ^n (1−(1/k^2 )) ⇒Π_(k=2) ^∞  (1−(1/k^2 )) =lim_(n→+∞)  A_n   but A_n =Π_(k=2) ^n  ((k^2 −1)/k^2 ) =Π_(k=2) ^n  ((k−1)/k) ((k+1)/k)  =Π_(k=2) ^n  ((k−1)/k) Π_(k=2) ^n  ((k+1)/k) =(1/2) (2/3)...((n−2)/(n−1))((n−1)/n) ×(3/2).(4/3).....(n/(n−1)) ((n+1)/n)  =(1/n) ((n+1)/2) =((n+1)/(2n)) ⇒lim_(n→+∞)  A_n =(1/2)
letAn=k=2n(11k2)k=2(11k2)=limn+AnbutAn=k=2nk21k2=k=2nk1kk+1k=k=2nk1kk=2nk+1k=1223n2n1n1n×32.43..nn1n+1n=1nn+12=n+12nlimn+An=12
Commented by raj last updated on 11/Jul/19
thank you
thankyouthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *