Menu Close

n-2-2-n-2-1-




Question Number 123067 by Khalmohmmad last updated on 22/Nov/20
Σ_(n=2) ^∞  (2/(n^2 −1))=?
$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}}{{n}^{\mathrm{2}} −\mathrm{1}}=? \\ $$
Answered by Dwaipayan Shikari last updated on 22/Nov/20
2Σ_(n=2) ^∞ (1/(n^2 −1))=Σ^∞ (1/(n−1))−Σ^∞ (1/(n+1))=(1+(1/2)+(1/3)+..)−((1/3)+(1/4)+..)=1+(1/2)  =(3/2)
$$\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{1}}=\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}−\mathrm{1}}−\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}+\mathrm{1}}=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..\right)−\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+..\right)=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *