n-2-n-1-sin-pi-n-sin-2pi-n-sin-n-1-n-pi-prove- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 124302 by Dwaipayan Shikari last updated on 02/Dec/20 n=2n−1sin(πn)sin(2πn)….sin(n−1nπ)prove Answered by mnjuly1970 last updated on 02/Dec/20 solutionzn−1=0[reinθ=ei2kπ,k∈Z][r=1,θk=2kπn,k=1,…,n−1](z−1)(z−z1)(z−z2)…(z−zn−1)=0wherez1,…,zn−1∈Cand(z−z1)…(z−zn−1)=zn−1+zn−2+…+z+1(∗)z=1bothsidesof(∗)(1−z1)…(z−zn−1)=(1+…+1)+1=nC=(1−ei2πn)(1−ei4πn)…(1−ei(2n−2)πn)=n∣C∣=1⇒∣2sin2(πn)−2isin(πn)cos(πn)∣…∣2sin2((n−1)πn)−2isin((n−1)πn)cos((n−1)πn)∣=n⇒2n−1sin(πn)sin(2πn)…sin((n−1)πn)=n………✓corallary:∫0π2log(sin(x))dx=−π2log(2) Commented by Dwaipayan Shikari last updated on 02/Dec/20 Great!thankingyou Commented by mnjuly1970 last updated on 02/Dec/20 grateful… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-189838Next Next post: lim-x-pi-3-2cos-5x-tan-2-x-2sin-2-2x-4sin-2x-cos-x-tan-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.