Menu Close

n-2-n-1-sin-pi-n-sin-2pi-n-sin-n-1-n-pi-prove-




Question Number 124302 by Dwaipayan Shikari last updated on 02/Dec/20
n=2^(n−1) sin((π/n))sin(((2π)/n))....sin(((n−1)/n)π)  prove
n=2n1sin(πn)sin(2πn).sin(n1nπ)prove
Answered by mnjuly1970 last updated on 02/Dec/20
solution   z^n −1=0      [re^(inθ) =e^(i2kπ)   ,k∈Z]                            [r=1, θ_k =((2kπ)/n) ,k=1,...,n−1]    (z−1)(z−z_1 )(z−z_2 )...(z−z_(n−1) )=0      where  z_1 ,...,z_(n−1) ∈C and   (z−z_1 )...(z−z_(n−1) )=z^(n−1) +z^(n−2) +...+z+1 (∗)      z=1 both sides of (∗)   (1−z_1 )...(z−z_(n−1) )=(1+...+1)+1=n  C=(1−e^((i2π)/n) )(1−e^((i4π)/n) )...(1−e^((i(2n−2)π)/n)  ) =n  ∣C∣=1⇒∣2sin^2 ((π/n))−2isin((π/n))cos((π/n))∣...∣2sin^2 ((((n−1)π)/n))−2isin((((n−1)π)/n))cos((((n−1)π)/n))∣=n  ⇒ 2^(n−1) sin((π/n))sin(((2π)/n))...sin((((n−1)π)/n))=n           .........✓     corallary:      ∫_0 ^( (π/2)) log(sin(x))dx=−(π/2)log(2)
solutionzn1=0[reinθ=ei2kπ,kZ][r=1,θk=2kπn,k=1,,n1](z1)(zz1)(zz2)(zzn1)=0wherez1,,zn1Cand(zz1)(zzn1)=zn1+zn2++z+1()z=1bothsidesof()(1z1)(zzn1)=(1++1)+1=nC=(1ei2πn)(1ei4πn)(1ei(2n2)πn)=nC∣=1⇒∣2sin2(πn)2isin(πn)cos(πn)2sin2((n1)πn)2isin((n1)πn)cos((n1)πn)∣=n2n1sin(πn)sin(2πn)sin((n1)πn)=ncorallary:0π2log(sin(x))dx=π2log(2)
Commented by Dwaipayan Shikari last updated on 02/Dec/20
Great ! thanking you
Great!thankingyou
Commented by mnjuly1970 last updated on 02/Dec/20
grateful ...
grateful

Leave a Reply

Your email address will not be published. Required fields are marked *