Menu Close

n-2-u-n-k-2-n-cos-pi-2-k-et-v-n-u-n-sin-pi-2-n-convergence-nature-sens-of-variations-and-adjantes-u-n-and-v-n-help-me-please-




Question Number 146793 by KONE last updated on 15/Jul/21
∀n≥2, u_n =Π_(k=2) ^n cos ((π/2^k )) et v_n =u_n sin ((π/2^n ))  convergence, nature, sens of variations and adjantes?  u_n  and v_n   help me please
n2,un=nk=2cos(π2k)etvn=unsin(π2n)convergence,nature,sensofvariationsandadjantes?unandvnhelpmeplease
Answered by Olaf_Thorendsen last updated on 15/Jul/21
sin2θ = 2sinθcosθ  cosθ = ((sin2θ)/(2sinθ))  ⇒ cos((π/2^k )) = ((sin((π/2^(k−1) )))/(2sin((π/2^k ))))  u_n  = Π_(k=2) ^n  cos((π/2^k )) =Π_(k=2) ^n  ((sin((π/2^(k−1) )))/(2sin((π/2^k ))))  (telescopic product)  u_n  =((sin((π/2)))/(2^(n−1) sin((π/2^n )))) = (1/(2^(n−1) sin((π/2^n ))))  u_n  ∼ (1/(2^(n−1) ×(π/2^n ))) = (2/π)  v_n  = u_n sin((π/2^n )) = (1/2^(n−1) ) →_∞  0  (u_(n+1) /u_n ) = ((sin((π/2^n )))/(2sin((π/2^(n+1) )))) = ((sin((π/2^n )))/(4sin((π/2^n ))cos((π/2^n ))))  (u_(n+1) /u_n ) = (1/(4cos((π/2^n ))))  n ≥ 2 ⇔ (π/2^n ) ≤ (π/4)  cos((π/2^n )) ≥ (1/( (√2)))  (1/(4cos((π/2^n )))) ≤ (1/(4/( (√2)))) = ((√2)/4) < 1 ⇒ (u_n ) ↘  (v_(n+1) /v_n ) = (2^(n−1) /2^n ) = (1/2) < 1 ⇒ (v_n ) ↘
sin2θ=2sinθcosθcosθ=sin2θ2sinθcos(π2k)=sin(π2k1)2sin(π2k)un=nk=2cos(π2k)=nk=2sin(π2k1)2sin(π2k)(telescopicproduct)un=sin(π2)2n1sin(π2n)=12n1sin(π2n)un12n1×π2n=2πvn=unsin(π2n)=12n10un+1un=sin(π2n)2sin(π2n+1)=sin(π2n)4sin(π2n)cos(π2n)un+1un=14cos(π2n)n2π2nπ4cos(π2n)1214cos(π2n)142=24<1(un)↘vn+1vn=2n12n=12<1(vn)↘

Leave a Reply

Your email address will not be published. Required fields are marked *