Menu Close

N-3548-9-2537-31-Determinate-the-last-digit-of-N-




Question Number 124110 by mathocean1 last updated on 30/Nov/20
  N=(3548)^9 ×(2537)^(31)   Determinate the last digit of N.
N=(3548)9×(2537)31DeterminatethelastdigitofN.
Answered by floor(10²Eta[1]) last updated on 24/Dec/20
N=(3548)^9 (2537)^(31) ≡8^9 7^(31) (mod10)  φ(10)=4.  8^9 7^(31) =(8^2 )^(4+1) (7^7 )^(4+3) ≡8.7^3 ≡2.7≡4(mod 10)  last digit of N is 4
N=(3548)9(2537)3189731(mod10)ϕ(10)=4.89731=(82)4+1(77)4+38.732.74(mod10)lastdigitofNis4
Answered by MJS_new last updated on 30/Nov/20
the last digit of N is the same as that of  8^9 ×7^(31)   for n≥1  the last digit of 8^n  is  { ((8; n=4k+1)),((4; n=4k+2)),((2; n=4k+3)),((6; n=4k+4)) :}; k≥0  9=4k+1 ⇒ last digit of 8^9  is 8  the last digit of 7^n  is  { ((7; n=4k+1)),((9; n=4k+2)),((3; n=4k+3)),((1; n=4k+4)) :}; k≥0  31=4k+3 ⇒ last digit of 7^(31)  is 3  8×3=24 ⇒ last digit of N is 4
thelastdigitofNisthesameasthatof89×731forn1thelastdigitof8nis{8;n=4k+14;n=4k+22;n=4k+36;n=4k+4;k09=4k+1lastdigitof89is8thelastdigitof7nis{7;n=4k+19;n=4k+23;n=4k+31;n=4k+4;k031=4k+3lastdigitof731is38×3=24lastdigitofNis4

Leave a Reply

Your email address will not be published. Required fields are marked *