Menu Close

n-integr-decompose-imsidr-R-x-the-fraction-F-x-1-x-2-1-n-




Question Number 34019 by prof Abdo imad last updated on 29/Apr/18
n integr decompose imsidr R[x] the fraction  F(x) =   (1/((x^2  −1)^n ))
nintegrdecomposeimsidrR[x]thefractionF(x)=1(x21)n
Commented by abdo mathsup 649 cc last updated on 06/May/18
F(x)= (1/((x−1)^n (x+1)^n ))  cha7gement x−1 =t give  F(x)=g(t)=  (1/(t^n (t+2)^n ))  let find  D_(n−1) (0) for  (1/((t+2)^n ))  h(x)= (1/((t+2)^n )) = Σ_(k=0) ^(n−1)    ((h^((k)) (0))/(k!)) x^k   +(x^n /(n!)) ξ(x)  h^((k)) (x)={(t+2)^(−n) }^((k))   h^′ (x)= −n(t+2)^(−(n+1))   h^((2)) (x) =(−1)^2  n(n+1) (t+2)^(−(n+2))   h^((k)) (x)= (−1)^k  n(n+1).....(n+k−1)(t+2)^(−(n+k))   h^((k)) (0) =(−1)^k n(n+1).....(n+k−1) 2^(−(n+k))   ⇒ h(x) = Σ_(k=0) ^(n−1)       (((−1)^k  n(n+1)....(n+k−1))/(k! 2^(n+k) )) x^k   + (x^n /(n!)) ξ(x)
F(x)=1(x1)n(x+1)ncha7gementx1=tgiveF(x)=g(t)=1tn(t+2)nletfindDn1(0)for1(t+2)nh(x)=1(t+2)n=k=0n1h(k)(0)k!xk+xnn!ξ(x)h(k)(x)={(t+2)n}(k)h(x)=n(t+2)(n+1)h(2)(x)=(1)2n(n+1)(t+2)(n+2)h(k)(x)=(1)kn(n+1)..(n+k1)(t+2)(n+k)h(k)(0)=(1)kn(n+1)..(n+k1)2(n+k)h(x)=k=0n1(1)kn(n+1).(n+k1)k!2n+kxk+xnn!ξ(x)
Commented by abdo mathsup 649 cc last updated on 07/May/18
h(t) = (1/((t+2)^n )) ⇒  g(t) = (1/t^n ) Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1)...(n+k−1))/(k! 2^(n+k) )) t^k   + (1/(n!))ξ(t)   = Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1).....(n+k−1))/(k! 2^(n+k)   t^(n−k) ))  changement of indice n−k =p give  g(t) = Σ_(p=1) ^n  (((−1)^(n−p)  n(n+1)....(n +n−p −1))/((n−p! 2^(n +n−p)  t^p ))  = Σ_(p=1) ^n    (((−1)^(n−p)   n(n+1)....(2n−p−1))/((n−p)! 2^(2n−p)   t^p ))  from another side  g(t) = Σ_(p=1) ^n   (λ_p /t^p )   + Σ_(k=1) ^n  (a_k /((t+2)^k )) ⇒  λ_p   = (((−1)^(n−p) n(n+1)....((n−p−1))/((n−p)! 2^(2n−p) ))  be continued...
h(t)=1(t+2)ng(t)=1tnk=0n1(1)kn(n+1)(n+k1)k!2n+ktk+1n!ξ(t)=k=0n1(1)kn(n+1)..(n+k1)k!2n+ktnkchangementofindicenk=pgiveg(t)=p=1n(1)npn(n+1).(n+np1)(np!2n+nptp=p=1n(1)npn(n+1).(2np1)(np)!22nptpfromanothersideg(t)=p=1nλptp+k=1nak(t+2)kλp=(1)npn(n+1).((np1)(np)!22npbecontinued
Commented by abdo mathsup 649 cc last updated on 07/May/18
λ_(p )   = (((−1)^(n−p)  n(n+1).....(2n−p−1))/((n−p)! 2^(2n−p) ))
λp=(1)npn(n+1)..(2np1)(np)!22np
Commented by prof Abdo imad last updated on 07/May/18
we have F(x)= (1/((x−1)^n (x+1)^n )) now we use  the changement x+1 =t ⇒  F(x)=g(t) = (1/((t−2)^n  t^n )) let put  h(t) =(1/((t−2)^n )) = Σ_(k=0) ^(n−1)  ((h^((k)) (0))/(k!)) t^k   + (t^n /(n!)) ξ(t)  h^((k)) (x) =(−1)^k n(n+1)....(n+k−1) (t−2)^(−(n+k))   h^((k)) (0) =(−1)^k  n(n+1).....(n+k−1)(−2)^(−(n+k))   ⇒h(t) =Σ_(k=0) ^(n−1)    (((−1)^k  n(n+1)....(n+k−1))/(k!(−2)^(n+k) )) t^k   +(t^n /(n!))ξ(t)⇒g(t)= Σ_(k=0) ^(n−1)  (((−1)^k  n(n+1)...(n+k−1))/(k!(−2)^(n+k)  t^(n−k) ))  and we folow tbe same road to find a_k  ....
wehaveF(x)=1(x1)n(x+1)nnowweusethechangementx+1=tF(x)=g(t)=1(t2)ntnletputh(t)=1(t2)n=k=0n1h(k)(0)k!tk+tnn!ξ(t)h(k)(x)=(1)kn(n+1).(n+k1)(t2)(n+k)h(k)(0)=(1)kn(n+1)..(n+k1)(2)(n+k)h(t)=k=0n1(1)kn(n+1).(n+k1)k!(2)n+ktk+tnn!ξ(t)g(t)=k=0n1(1)kn(n+1)(n+k1)k!(2)n+ktnkandwefolowtbesameroadtofindak.

Leave a Reply

Your email address will not be published. Required fields are marked *