Menu Close

n-integr-natural-calculate-0-dx-x-1-x-2-x-n-




Question Number 37600 by prof Abdo imad last updated on 15/Jun/18
n integr natural calculate  ∫_0 ^∞      (dx/((x+1)(x+2)......(x+n)))
nintegrnaturalcalculate0dx(x+1)(x+2)(x+n)
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Jun/18
(1/((x+1)(x+2)(x+3)...(x+n)))=e^t   −{ln(x+1)+ln(x+2)+ln(x+3)..+ln(x+n)=     t  dt=−{(1/(x+1))+(1/(x+2))+...+(1/(x+n))}dx  =−{(((e^t /(x+1))+(e^t /(x+2))+...+(e^t /(x+n)))/((x+1)(x+2)(x+3)..(x+n)))}contd
1(x+1)(x+2)(x+3)(x+n)=et{ln(x+1)+ln(x+2)+ln(x+3)..+ln(x+n)=tdt={1x+1+1x+2++1x+n}dx={etx+1+etx+2++etx+n(x+1)(x+2)(x+3)..(x+n)}contd
Commented by math khazana by abdo last updated on 17/Jun/18
you are really a rail ways...
youarereallyarailways
Answered by ajfour last updated on 17/Jun/18
I=(1/((n−1)!))∫_0 ^(  ∞) (dx/(x+1))−(1/((n−2)!))∫_0 ^(  ∞) (dx/(x+2))  −(1/(2!(n−3)!))∫_0 ^(  ∞) (dx/(x+3))+(1/(3!(n−4)!))∫_0 ^(  ∞) (dx/(x+4))  .....−(((−1)^n )/((n−1)!))∫_0 ^(  ∞) (dx/(x+n))     =lim_(x→∞) Σ(((−1)^r )/((r−1)!(n−r)!))ln (1+(x/r))     =(1/((n−1)!))Σ(−1)^r lim^(n−1) _(x→∞) C_(r−1) ln (1+(x/r))  .....
I=1(n1)!0dxx+11(n2)!0dxx+212!(n3)!0dxx+3+13!(n4)!0dxx+4..(1)n(n1)!0dxx+n=limxΣ(1)r(r1)!(nr)!ln(1+xr)=1(n1)!Σ(1)rlimn1xCr1ln(1+xr)..

Leave a Reply

Your email address will not be published. Required fields are marked *