Menu Close

n-is-an-integer-prove-algebraically-that-the-sum-of-1-2-n-n-1-and-1-2-n-1-n-2-is-always-a-square-number-note-write-your-expression-in-a-form-that-clearly-shows-a-square-number-




Question Number 130257 by pete last updated on 23/Jan/21
n is an integer  prove algebraically that the sum of   (1/2)n(n+1) and (1/2)(n+1)(n+2) is always  a square number.  note: write your expression in a form  that clearly shows a square number.
$${n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer} \\ $$$$\mathrm{prove}\:\mathrm{algebraically}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)\:\mathrm{and}\:\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\:\mathrm{is}\:\mathrm{always} \\ $$$$\mathrm{a}\:\mathrm{square}\:\mathrm{number}. \\ $$$$\mathrm{note}:\:{write}\:{your}\:{expression}\:{in}\:{a}\:{form} \\ $$$${that}\:{clearly}\:{shows}\:{a}\:{square}\:{number}. \\ $$
Commented by Dwaipayan Shikari last updated on 23/Jan/21
(1/2)n(n+1)+(1/2)(n+1)(n+2)=(1/2)(n+1)(n+n+2)=(n+1)^2
$$\frac{\mathrm{1}}{\mathrm{2}}{n}\left({n}+\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)\left({n}+{n}+\mathrm{2}\right)=\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$
Commented by pete last updated on 23/Jan/21
thank you sir, very much
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{very}\:\mathrm{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *