Menu Close

n-k-1-k-n-is-a-family-of-integrs-numbers-let-put-p-x-k-1-n-x-n-k-and-q-x-j-0-n-1-x-j-if-n-k-k-1-n-prove-that-q-divide-p-




Question Number 30588 by abdo imad last updated on 23/Feb/18
(n_k )_(1≤k≤n)  is a family of integrs numbers let put  p(x)=Σ_(k=1) ^n  x^n_k     and q(x)= Σ_(j=0) ^(n−1)  x^j    if n_k ≡k−1[n] prove that q divide p.
$$\left({n}_{{k}} \right)_{\mathrm{1}\leqslant{k}\leqslant{n}} \:{is}\:{a}\:{family}\:{of}\:{integrs}\:{numbers}\:{let}\:{put} \\ $$$${p}\left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \:{x}^{{n}_{{k}} } \:\:\:{and}\:{q}\left({x}\right)=\:\sum_{{j}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{x}^{{j}} \: \\ $$$${if}\:{n}_{{k}} \equiv{k}−\mathrm{1}\left[{n}\right]\:{prove}\:{that}\:{q}\:{divide}\:{p}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *