Menu Close

n-k-1-n-1-k-1-n-k-H-k-Find-the-value-of-n-1-1-n-1-n-2-




Question Number 156386 by mnjuly1970 last updated on 10/Oct/21
          φ (n )= Σ_(k=1) ^n (−1 )^( k−1)  ((( n)),(( k)) ) H_( k)            Find  the value of :                Σ_(n=1) ^∞  (−1)^( n−1)  φ ( n^( 2) ) =?
ϕ(n)=nk=1(1)k1(nk)HkFindthevalueof:n=1(1)n1ϕ(n2)=?
Answered by mindispower last updated on 10/Oct/21
1=∅(1)  2−(1+(1/2))=(1/2)=∅(2)  φ(3)=3−3((3/2))+(1+(1/2)+(1/3))=(1/3)=∅(3)  φ(n)=(1/n)..?  H_k =∫_0 ^1 ((1−x^k )/(1−x))dx  Σ_(k=1) ^n ∫_0 ^1 (−1)^(k−1)  ((n),(k) )((1−x^k )/(1−x))dx=∅(n)  =∫_0 ^1 (1/(1−x))+(((1−x)^n −1)/(1−x))dx  =∫_0 ^1 (((1−x)^n )/(1−x))dx=(1/n)=φ(n)  Σ_(n≥1) (((−1)^(n−1) )/n^2 )=−Li_2 (−1)=(π^2 /(12))
1=(1)2(1+12)=12=(2)ϕ(3)=33(32)+(1+12+13)=13=(3)ϕ(n)=1n..?Hk=011xk1xdxnk=101(1)k1(nk)1xk1xdx=(n)=0111x+(1x)n11xdx=01(1x)n1xdx=1n=ϕ(n)n1(1)n1n2=Li2(1)=π212
Commented by mnjuly1970 last updated on 10/Oct/21
  very nice ..excellent ..thank you  so much  sir power
verynice..excellent..thankyousomuchsirpower
Commented by mindispower last updated on 10/Oct/21
withe pleasur sir
withepleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *