Menu Close

N-lt-10200-N-has-five-digits-N-22-23-and-N-5-17-Determinate-the-integer-N-




Question Number 125670 by mathocean1 last updated on 12/Dec/20
N<10200 , N has five digits.  N≡22[23] and N≡5[17].  Determinate the integer N.
$${N}<\mathrm{10200}\:,\:{N}\:{has}\:{five}\:{digits}. \\ $$$${N}\equiv\mathrm{22}\left[\mathrm{23}\right]\:{and}\:{N}\equiv\mathrm{5}\left[\mathrm{17}\right]. \\ $$$${Determinate}\:{the}\:{integer}\:{N}. \\ $$
Answered by floor(10²Eta[1]) last updated on 12/Dec/20
10000≤N<10200  N≡22(mod23)⇒N=23a+22, a∈Z  N≡5(mod17)⇒23a+22≡6a+5≡5(mod17)  ⇒6a≡0(mod17)⇒a≡0(mod17)  ⇒a=17b∴N=391b+22, b∈Z  10000≤391b+22<10200  9978≤391b<10178  26≤b≤26⇒b=26  ⇒N=391.26+22  N=10188
$$\mathrm{10000}\leqslant\mathrm{N}<\mathrm{10200} \\ $$$$\mathrm{N}\equiv\mathrm{22}\left(\mathrm{mod23}\right)\Rightarrow\mathrm{N}=\mathrm{23a}+\mathrm{22},\:\mathrm{a}\in\mathbb{Z} \\ $$$$\mathrm{N}\equiv\mathrm{5}\left(\mathrm{mod17}\right)\Rightarrow\mathrm{23a}+\mathrm{22}\equiv\mathrm{6a}+\mathrm{5}\equiv\mathrm{5}\left(\mathrm{mod17}\right) \\ $$$$\Rightarrow\mathrm{6a}\equiv\mathrm{0}\left(\mathrm{mod17}\right)\Rightarrow\mathrm{a}\equiv\mathrm{0}\left(\mathrm{mod17}\right) \\ $$$$\Rightarrow\mathrm{a}=\mathrm{17b}\therefore\mathrm{N}=\mathrm{391b}+\mathrm{22},\:\mathrm{b}\in\mathbb{Z} \\ $$$$\mathrm{10000}\leqslant\mathrm{391b}+\mathrm{22}<\mathrm{10200} \\ $$$$\mathrm{9978}\leqslant\mathrm{391b}<\mathrm{10178} \\ $$$$\mathrm{26}\leqslant\mathrm{b}\leqslant\mathrm{26}\Rightarrow\mathrm{b}=\mathrm{26} \\ $$$$\Rightarrow\mathrm{N}=\mathrm{391}.\mathrm{26}+\mathrm{22} \\ $$$$\mathrm{N}=\mathrm{10188} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *