Question Number 41642 by Tawa1 last updated on 10/Aug/18
$$\mathrm{n}\left(\mathrm{n}\:−\:\mathrm{1}\right)\left(\mathrm{n}\:−\:\mathrm{2}\right)\left(\mathrm{n}\:−\:\mathrm{3}\right)\:….\:\left(\mathrm{n}\:−\:\mathrm{r}\:+\:\mathrm{1}\right)\:=\:?? \\ $$
Answered by alex041103 last updated on 10/Aug/18
$$=\frac{{n}!}{\left({n}−{r}\right)!} \\ $$
Commented by Tawa1 last updated on 10/Aug/18
$$\mathrm{please}\:\mathrm{workings} \\ $$
Commented by alex041103 last updated on 10/Aug/18
$${n}\left({n}−\mathrm{1}\right)…\left({n}−{r}+\mathrm{1}\right)= \\ $$$$=\underset{{k}={n}−{r}+\mathrm{1}} {\overset{{n}} {\prod}}{k}=\underset{{k}={n}−{r}+\mathrm{1}} {\overset{{n}} {\prod}}{k}\:\frac{\underset{{k}=\mathrm{1}} {\overset{{n}−{r}} {\prod}}{k}}{\underset{{k}=\mathrm{1}} {\overset{{n}−{r}} {\prod}}{k}}= \\ $$$$=\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{k}}{\underset{{k}=\mathrm{1}} {\overset{{n}−{r}} {\prod}}{k}}=\frac{{n}!}{\left({n}−{r}\right)!} \\ $$
Commented by Tawa1 last updated on 10/Aug/18
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$