Menu Close

n-N-prove-9-n-3-n-1-3-n-2-3-




Question Number 21067 by youssoufab last updated on 11/Sep/17
∀n∈N, prove 9∣[n^3 +(n+1)^3 +(n+2)^3 ]
nN,prove9[n3+(n+1)3+(n+2)3]
Answered by dioph last updated on 12/Sep/17
n^3 +(n+1)^3 +(n+2)^3 =  =n^3 +n^3 +3n^2 +3n+1+n^3 +6n^2 +12n+8=  =3n^3 +9n^2 +15n+9  =3n(n^2 +5)+9(n^2 +1) = x  Case 1: 3 ∣ n  ⇒ n=3k  ⇒ x=9k(9k^2 +5)+9(9k^2 +1)  ⇒ 9 ∣ x  Case 2: 3 ∤ n  ⇒ n^2 +5 ≡ n^2 −1 ≡ (n+1)(n−1)  ≡ 0 (mod 3)  ⇒ n^2 +5 = 3h  ⇒ x=9nh+9(n^2 +1)  ⇒ 9 ∣ x  ■
n3+(n+1)3+(n+2)3==n3+n3+3n2+3n+1+n3+6n2+12n+8==3n3+9n2+15n+9=3n(n2+5)+9(n2+1)=xCase1:3nn=3kx=9k(9k2+5)+9(9k2+1)9xCase2:3nn2+5n21(n+1)(n1)0(mod3)n2+5=3hx=9nh+9(n2+1)9x◼
Commented by youssoufab last updated on 14/Sep/17
thanks for help
thanksforhelp
Answered by mrW1 last updated on 12/Sep/17
let m=n+1  ⇒(m−1)^3 +m^3 +(m+1)^3   =m^3 −3m^2 +3m−1+m^3 +m^3 +3m^2 +3m+1  =3m^3 +6m  =3m(m^2 +2)    if m=3k:  3m(m^2 +2)=9k(9k^2 +2)≡0(mod 9)    if m=3k±1:  3m(m^2 +2)=3(3k±1)(9k^2 ±6k+1+2)  =9(3k±1)(3k^2 ±2k+1)≡0(mod 9)
letm=n+1(m1)3+m3+(m+1)3=m33m2+3m1+m3+m3+3m2+3m+1=3m3+6m=3m(m2+2)ifm=3k:3m(m2+2)=9k(9k2+2)0(mod9)ifm=3k±1:3m(m2+2)=3(3k±1)(9k2±6k+1+2)=9(3k±1)(3k2±2k+1)0(mod9)

Leave a Reply

Your email address will not be published. Required fields are marked *