Menu Close

n-N-suppose-u-n-5sin-1-n-2-1-5-cos-n-n-Prove-that-lim-n-u-n-0-




Question Number 116166 by Ar Brandon last updated on 01/Oct/20
∀n∈N^∗ , suppose u_n =(5sin(1/n^2 )+(1/5)cos n)^n   Prove that lim_(n→+∞) u_n =0
nN,supposeun=(5sin1n2+15cosn)nProvethatlimn+un=0
Answered by mindispower last updated on 01/Oct/20
since sin((1/n^2 ))→0⇒∃N such ∀n≥N  0≤sin((1/n^2 ))<(1/(10))  ∀x∈R    −1≤cos(x)≤1  ⇒∀n≥N  0−(1/5)≤5sin((1/n^2 ))+((cos(n))/5)≤(5/(10))+(1/5)=(7/(10))  ∀n≥N       −(1/5)≤5sin((1/n^2 ))+((cos(n))/5)≤(7/(10))  ⇒−((1/5))^n ≤(5sin((1/n^2 ))+((cos(n))/5))^n ≤((7/(10)))^n   since −((1/5))^n →0,((7/(10)))^n →0  we get our Ansewr
sincesin(1n2)0NsuchnN0sin(1n2)<110xR1cos(x)1nN0155sin(1n2)+cos(n)5510+15=710nN155sin(1n2)+cos(n)5710(15)n(5sin(1n2)+cos(n)5)n(710)nsince(15)n0,(710)n0wegetourAnsewr

Leave a Reply

Your email address will not be published. Required fields are marked *