Menu Close

n-N-U-n-1-1-2-n-1-U-n-U-n-




Question Number 37930 by zesearho last updated on 19/Jun/18
n∈N  U_(n+1) =((1/2))^(n+1) +U_n   U_n =?
$${n}\in\mathbb{N} \\ $$$${U}_{{n}+\mathrm{1}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} +{U}_{{n}} \\ $$$${U}_{{n}} =? \\ $$
Commented by abdo.msup.com last updated on 19/Jun/18
we have u_(n+1)  −u_n =((1/2))^(n+1)  ⇒  Σ_(k=0) ^(n−1) (u_(k+1)  −u_k )=Σ_(k=0) ^(n−1) ((1/2))^(k+1) ⇒  u_n  −u_0 = Σ_(k=1) ^n  ((1/2))^k  =((1−((1/2))^(n+1) )/(1−(1/2))) −1  =2 −2((1/2))^(n+1)  −1= 1− (1/2^n ) ⇒  u_n = u_0  +1−(1/2^n ) .
$${we}\:{have}\:{u}_{{n}+\mathrm{1}} \:−{u}_{{n}} =\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left({u}_{{k}+\mathrm{1}} \:−{u}_{{k}} \right)=\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}+\mathrm{1}} \Rightarrow \\ $$$${u}_{{n}} \:−{u}_{\mathrm{0}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{k}} \:=\frac{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} }{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}\:−\mathrm{1} \\ $$$$=\mathrm{2}\:−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} \:−\mathrm{1}=\:\mathrm{1}−\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\Rightarrow \\ $$$${u}_{{n}} =\:{u}_{\mathrm{0}} \:+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:. \\ $$
Answered by ajfour last updated on 19/Jun/18
U_1 = U_0 +(1/2)  U_2 =U_1 +((1/2))^2   U_n = U_0 +1−((1/2))^n .
$${U}_{\mathrm{1}} =\:{U}_{\mathrm{0}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${U}_{\mathrm{2}} ={U}_{\mathrm{1}} +\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${U}_{{n}} =\:{U}_{\mathrm{0}} +\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} . \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *