Menu Close

n-o-oo-1-n-x-2n-1-4n-2-1-




Question Number 184858 by SANOGO last updated on 12/Jan/23
Σ_(n=o) ^(+oo) (((−1)^n x^(2n+1) )/(4n^2 −1))
$$\underset{{n}={o}} {\overset{+{oo}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}} \\ $$
Answered by qaz last updated on 14/Jan/23
y=Σ(((−1)^n )/(4n^2 −1)) x^(2n+1)         y′=Σ(((−1)^n x^(2n) )/(2n−1))=xΣ(((−1)^n x^(2n−1) )/(2n−1))  y′′=Σ(((−1)^n x^(2n−1) )/(2n−1))+xΣ(−1)^n x^(2n−2) =((y′)/x)+(1/(x(1+x^2 )))  ⇒y′=C_1 x−1−xarctan x  ⇒y=C_1 x^2 −(1/2)x−(1/2)x^2 arctan x−(1/2)arctan x+C_2   y(0)=0    y(0)′=−1    ⇒C_1 =0       C_2 =0  ⇒y=−(1/2)x−(1/2)x^2 arctan x−(1/2)arctan x
$${y}=\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{x}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:\:\:\: \\ $$$${y}'=\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\mathrm{2}{n}−\mathrm{1}}={x}\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}} \\ $$$${y}''=\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}+{x}\Sigma\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}−\mathrm{2}} =\frac{{y}'}{{x}}+\frac{\mathrm{1}}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow{y}'={C}_{\mathrm{1}} {x}−\mathrm{1}−{x}\mathrm{arctan}\:{x} \\ $$$$\Rightarrow{y}={C}_{\mathrm{1}} {x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{arctan}\:{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:{x}+{C}_{\mathrm{2}} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:\:{y}\left(\mathrm{0}\right)'=−\mathrm{1}\:\:\:\:\Rightarrow{C}_{\mathrm{1}} =\mathrm{0}\:\:\:\:\:\:\:{C}_{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{y}=−\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \mathrm{arctan}\:{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:{x} \\ $$
Commented by SANOGO last updated on 14/Jan/23
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *