Menu Close

n-o-oo-x-n-4n-2-1-




Question Number 184768 by SANOGO last updated on 11/Jan/23
Σ_(n=o) ^(+oo)  (x^n /(4n^2 −1))
+oon=oxn4n21
Commented by SANOGO last updated on 11/Jan/23
merci
merci
Answered by mr W last updated on 11/Jan/23
Σ_(n=0) ^∞ x^(2n) =1+x^2 +x^4 +...=(1/(1−x^2 ))  Σ_(n=0) ^∞ ∫_0 ^x x^(2n) dx=∫_0 ^x (dx/(1−x^2 ))  Σ_(n=0) ^∞ (x^(2n+1) /(2n+1))=(1/2)ln ((1+x)/(1−x))  Σ_(n=0) ^∞ (x^(2n) /(2n+1))=(1/(2x))ln ((1+x)/(1−x))  replace x with (√x)  ⇒Σ_(n=0) ^∞ (x^n /(2n+1))=(1/(2(√x)))ln ((1+(√x))/(1−(√x)))  Σ_(n=1) ^∞ (x^(n−1) /(2n−1))=(1/(2(√x)))ln ((1+(√x))/(1−(√x)))  Σ_(n=1) ^∞ (x^n /(2n−1))=(x/(2(√x)))ln ((1+(√x))/(1−(√x)))  Σ_(n=0) ^∞ (x^n /(2n−1))+1=((√x)/2)ln ((1+(√x))/(1−(√x)))  ⇒Σ_(n=0) ^∞ (x^n /(2n−1))=((√x)/2)ln ((1+(√x))/(1−(√x)))−1    Σ_(n=0) ^∞ ((x^n /(2n−1))−(x^n /(2n+1)))=((√x)/2)ln ((1+(√x))/(1−(√x)))−1−(1/(2(√x)))ln ((1+(√x))/(1−(√x)))  ⇒2Σ_(n=0) ^∞ (x^n /(4n^2 −1))=(1/2)((√x)−(1/( (√x))))ln ((1+(√x))/(1−(√x)))−1  ⇒Σ_(n=0) ^∞ (x^n /(4n^2 −1))=−(1/4)((1/( (√x)))−(√x))ln ((1+(√x))/(1−(√x)))−(1/2)
n=0x2n=1+x2+x4+=11x2n=00xx2ndx=0xdx1x2n=0x2n+12n+1=12ln1+x1xn=0x2n2n+1=12xln1+x1xreplacexwithxn=0xn2n+1=12xln1+x1xn=1xn12n1=12xln1+x1xn=1xn2n1=x2xln1+x1xn=0xn2n1+1=x2ln1+x1xn=0xn2n1=x2ln1+x1x1n=0(xn2n1xn2n+1)=x2ln1+x1x112xln1+x1x2n=0xn4n21=12(x1x)ln1+x1x1n=0xn4n21=14(1xx)ln1+x1x12

Leave a Reply

Your email address will not be published. Required fields are marked *